Insect neuroscience: Filling the knowledge gap on gap junctions. 2022

Zane N Aldworth, and Mark Stopfer
National Institute of Child Health and Human Development, National Institutes of Health, Building 35A, Room 3E-623, Bethesda, MD 20892, USA.

Gap junctions, too small to spot in images used to create connectome maps, play outsized roles in shaping neural activity. A recent study reveals a surprising new gap junction function: they can stabilize a neuron's membrane potential against unwanted oscillations.

UI MeSH Term Description Entries
D007313 Insecta Members of the phylum ARTHROPODA composed or organisms characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth with several hundred thousand different kinds. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1). Insects,Insect
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017629 Gap Junctions Connections between cells which allow passage of small molecules and electric current. Gap junctions were first described anatomically as regions of close apposition between cells with a narrow (1-2 nm) gap between cell membranes. The variety in the properties of gap junctions is reflected in the number of CONNEXINS, the family of proteins which form the junctions. Gap Junction,Junction, Gap,Junctions, Gap
D017630 Connexins A group of homologous proteins which form the intermembrane channels of GAP JUNCTIONS. The connexins are the products of an identified gene family which has both highly conserved and highly divergent regions. The variety contributes to the wide range of functional properties of gap junctions. Connexin,Connexin Complex Proteins,Gap Junction Proteins,Gap Junction Channel Proteins,Gap Junction Protein,Junction Protein, Gap,Junction Proteins, Gap
D063132 Connectome A comprehensive map of the physical interconnections of an organism's neural networks. This modular organization of neuronal architecture is believed to underlie disease mechanisms and the biological development of the CENTRAL NERVOUS SYSTEM. Brain Connectomics,Connectome Mapping,Connectomics,Human Connectome,Human Connectome Project,Brain Connectomic,Connectome Mappings,Connectome Project, Human,Connectome Projects, Human,Connectome, Human,Connectomes,Connectomes, Human,Connectomic,Connectomic, Brain,Connectomics, Brain,Human Connectome Projects,Human Connectomes,Mapping, Connectome,Mappings, Connectome

Related Publications

Zane N Aldworth, and Mark Stopfer
January 2011, Midwives,
Zane N Aldworth, and Mark Stopfer
October 2015, CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne,
Zane N Aldworth, and Mark Stopfer
September 2023, Circulation,
Zane N Aldworth, and Mark Stopfer
January 2022, Frontiers in pediatrics,
Zane N Aldworth, and Mark Stopfer
November 2016, Neuroscience and biobehavioral reviews,
Zane N Aldworth, and Mark Stopfer
January 2021, Frontiers in psychiatry,
Zane N Aldworth, and Mark Stopfer
February 1982, Cell,
Zane N Aldworth, and Mark Stopfer
June 2023, Nature,
Zane N Aldworth, and Mark Stopfer
November 2014, The American journal of managed care,
Zane N Aldworth, and Mark Stopfer
July 2010, Journal of hypertension,
Copied contents to your clipboard!