Decreasing dorsal cochlear nucleus activity ameliorates noise-induced tinnitus perception in mice. 2022

Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
Hearing and Neuronal activity Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.

The dorsal cochlear nucleus (DCN) is a region known to integrate somatosensory and auditory inputs and is identified as a potential key structure in the generation of phantom sound perception, especially noise-induced tinnitus. Yet, how altered homeostatic plasticity of the DCN induces and maintains the sensation of tinnitus is not clear. Here, we chemogenetically decrease activity of a subgroup of DCN neurons, Ca2+/Calmodulin kinase 2 α (CaMKII α)-positive DCN neurons, using Gi-coupled human M4 Designer Receptors Exclusively Activated by Designer Drugs (hM4Di DREADDs), to investigate their role in noise-induced tinnitus. Mice were exposed to loud noise (9-11kHz, 90dBSPL, 1h, followed by 2h of silence), and auditory brainstem responses (ABRs) and gap prepulse inhibition of acoustic startle (GPIAS) were recorded 2 days before and 2 weeks after noise exposure to identify animals with a significantly decreased inhibition of startle, indicating tinnitus but without permanent hearing loss. Neuronal activity of CaMKII α+ neurons expressing hM4Di in the DCN was lowered by administration of clozapine-N-oxide (CNO). We found that acutely decreasing firing rate of CaMKII α+ DCN units decrease tinnitus-like responses (p = 3e -3, n = 11 mice), compared to the control group that showed no improvement in GPIAS (control virus; CaMKII α-YFP + CNO, p = 0.696, n = 7 mice). Extracellular recordings confirmed CNO to decrease unit firing frequency of CaMKII α-hM4Di+ mice and alter best frequency and tuning width of response to sound. However, these effects were not seen if CNO had been previously administered during the noise exposure (n = 6 experimental and 6 control mice). We found that lowering DCN activity in mice displaying tinnitus-related behavior reduces tinnitus, but lowering DCN activity during noise exposure does not prevent noise-induced tinnitus. Our results suggest that CaMKII α-positive cells in the DCN are not crucial for tinnitus induction but play a significant role in maintaining tinnitus perception in mice.

UI MeSH Term Description Entries
D010465 Perception The process by which the nature and meaning of sensory stimuli are recognized and interpreted. Sensory Processing,Processing, Sensory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014012 Tinnitus A nonspecific symptom of hearing disorder characterized by the sensation of buzzing, ringing, clicking, pulsations, and other noises in the ear. Objective tinnitus refers to noises generated from within the ear or adjacent structures that can be heard by other individuals. The term subjective tinnitus is used when the sound is audible only to the affected individual. Tinnitus may occur as a manifestation of COCHLEAR DISEASES; VESTIBULOCOCHLEAR NERVE DISEASES; INTRACRANIAL HYPERTENSION; CRANIOCEREBRAL TRAUMA; and other conditions. Pulsatile Tinnitus,Ringing-Buzzing-Tinnitus,Spontaneous Oto-Acoustic Emission Tinnitus,Tensor Palatini Induced Tinnitus,Tensor Tympani Induced Tinnitus,Tinnitus of Vascular Origin,Tinnitus, Clicking,Tinnitus, Leudet,Tinnitus, Leudet's,Tinnitus, Noise Induced,Tinnitus, Objective,Tinnitus, Spontaneous Oto-Acoustic Emission,Tinnitus, Subjective,Tinnitus, Tensor Palatini Induced,Tinnitus, Tensor Tympani Induced,Vascular Origin Tinnitus,Clicking Tinnitus,Induced Tinnitus, Noise,Leudet Tinnitus,Leudet's Tinnitus,Noise Induced Tinnitus,Objective Tinnitus,Ringing Buzzing Tinnitus,Spontaneous Oto Acoustic Emission Tinnitus,Subjective Tinnitus,Tinnitus, Leudets,Tinnitus, Pulsatile,Tinnitus, Spontaneous Oto Acoustic Emission,Tinnitus, Vascular Origin
D016057 Evoked Potentials, Auditory, Brain Stem Electrical waves in the CEREBRAL CORTEX generated by BRAIN STEM structures in response to auditory click stimuli. These are found to be abnormal in many patients with CEREBELLOPONTINE ANGLE lesions, MULTIPLE SCLEROSIS, or other DEMYELINATING DISEASES. Acoustic Evoked Brain Stem Potentials,Auditory Brain Stem Evoked Responses,Brain Stem Auditory Evoked Potentials,Evoked Responses, Auditory, Brain Stem,Acoustic Evoked Brain Stem Potential,Acoustic Evoked Brainstem Potential,Acoustic Evoked Brainstem Potentials,Auditory Brain Stem Evoked Response,Auditory Brain Stem Response,Auditory Brain Stem Responses,Auditory Brainstem Evoked Response,Auditory Brainstem Evoked Responses,Auditory Brainstem Responses,Brain Stem Auditory Evoked Potential,Brainstem Auditory Evoked Potential,Brainstem Auditory Evoked Potentials,Evoked Potential, Auditory, Brainstem,Evoked Potentials, Auditory, Brainstem,Evoked Response, Auditory, Brain Stem,Evoked Response, Auditory, Brainstem,Evoked Responses, Auditory, Brainstem,Auditory Brainstem Response,Brainstem Response, Auditory,Brainstem Responses, Auditory,Response, Auditory Brainstem,Responses, Auditory Brainstem
D017626 Cochlear Nucleus The brain stem nucleus that receives the central input from the cochlear nerve. The cochlear nucleus is located lateral and dorsolateral to the inferior cerebellar peduncles and is functionally divided into dorsal and ventral parts. It is tonotopically organized, performs the first stage of central auditory processing, and projects (directly or indirectly) to higher auditory areas including the superior olivary nuclei, the medial geniculi, the inferior colliculi, and the auditory cortex. Cochlear Nuclei,Nuclei, Cochlear,Nucleus, Cochlear
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D054732 Calcium-Calmodulin-Dependent Protein Kinase Type 2 A multifunctional calcium-calmodulin-dependent protein kinase subtype that occurs as an oligomeric protein comprised of twelve subunits. It differs from other enzyme subtypes in that it lacks a phosphorylatable activation domain that can respond to CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASE KINASE. Ca(2+)-Calmodulin Dependent Protein Kinase Type II,CaCMKII,CaM KII,CaM KIIalpha,CaM KIIbeta,CaM KIIdelta,CaM Kinase II,CaM Kinase II alpha,CaM Kinase II beta,CaM Kinase II delta,CaM Kinase II gamma,CaM PK II,CaM-Kinase II,CaM-Kinase IIalpha,CaMKII,CaMKIIgamma,Calcium-Calmodulin Dependent Protein Kinase II beta,Calcium-Calmodulin Dependent Protein Kinase II delta,Calcium-Calmodulin Dependent Protein Kinase II gamma,Calcium-Calmodulin Protein Kinase II,Calcium-Calmodulin-Dependent PK Type II,Calcium-Calmodulin-Dependent Protein Kinase Type 2 alpha Subunit,Calcium-Calmodulin-Dependent Protein Kinase Type 2 beta Subunit,Calcium-Calmodulin-Dependent Protein Kinase Type 2 delta Subunit,Calcium-Calmodulin-Dependent Protein Kinase Type 2 gamma Subunit,Calcium-Dependent CaM Kinase II,Calmodulin Kinase IIalpha,Calmodulin-Dependent Protein Kinase II,CaM Kinase IIalpha,Calcium Calmodulin Dependent PK Type II,Calcium Calmodulin Dependent Protein Kinase II beta,Calcium Calmodulin Dependent Protein Kinase II delta,Calcium Calmodulin Dependent Protein Kinase II gamma,Calcium Calmodulin Dependent Protein Kinase Type 2,Calcium Calmodulin Dependent Protein Kinase Type 2 alpha Subunit,Calcium Calmodulin Dependent Protein Kinase Type 2 beta Subunit,Calcium Calmodulin Dependent Protein Kinase Type 2 delta Subunit,Calcium Calmodulin Dependent Protein Kinase Type 2 gamma Subunit,Calcium Calmodulin Protein Kinase II,Calcium Dependent CaM Kinase II,Calmodulin Dependent Protein Kinase II

Related Publications

Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
October 2002, Hearing research,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
May 2019, Neuroscience,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
November 2014, Journal of neuroscience research,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
January 1999, American journal of otolaryngology,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
November 2012, Brain research,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
December 2008, American journal of audiology,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
February 2016, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
February 2012, Journal of the Association for Research in Otolaryngology : JARO,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
August 2005, Hearing research,
Thawann Malfatti, and Barbara Ciralli, and Markus M Hilscher, and Richardson N Leao, and Katarina E Leao
October 2012, Hearing research,
Copied contents to your clipboard!