Neuronal coding of linear motion in the vestibular nuclei of the alert cat. I. Response characteristics to vertical otolith stimulation. 1987

C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour

The aim of the present study was to investigate some aspects of the central processing of otolith information during linear motion. For this purpose, the response characteristics of 69 vestibular nuclei units to sinusoidal otolith stimulation in the vertical Z axis were analysed in the alert cat. Among this population of neurons which responded to a 0.05 Hz, 290 mm translation, 47 units (70%) displayed a firing rate modulation which followed the input frequency (H1 units). The majority of these neurons exhibited an increase in discharge rate during upward displacement, with a response phase close to the motion velocity or slightly leading downward acceleration. The acceleration related units were divided into two groups according to whether they showed clear increases or only a slight change in discharge rate when the stimulus frequency was increased. The former group was characterized by an average -16.3 dB drop in gain (from 43.9 +/- 1.8 dB, S.D. to 27.6 +/- 7 dB, S.D.) within the 0.05 Hz-0.5 Hz frequency range, while the latter group displayed an average -31.2 dB gain attenuation (from 45.1 +/- 1.1 dB, S.D. to 13.9 +/- 0 dB) within the same decade. In contrast to differences in response gain, all the units tested exhibited a relatively stable phase lead of about 20 degrees with respect to downward peak acceleration. Conversely, units whose response was close to motion velocity in the lower frequency range (0.05 Hz-0.10 Hz) displayed a strong phase lead of about 100 degrees when the stimulus frequency was increased (up to 0.50 Hz). These neurons were thus characterized by an acceleration related response in the higher frequency range. At the same time, an average -24.8 dB gain attenuation (from 47.7 +/- 3.4 dB to 22.9 +/- 3.7 dB) was found in the 0.05 Hz-0.5 Hz decade. The remaining 22 neurons (30%) were called H2 units since they displayed a response waveform double that of the input frequency, a response already described during sinusoidal rotation. Unit discharge reached a peak approximately in phase with maximum upward and downward velocity. Asymmetrical change in unit firing rate about the resting discharge level and different dynamic behavior of the upward and downward response components were usually found. These response characteristics suggest that the H2 patterns are centrally constructed and could result from convergence of otolith afferents having opposite polarization vectors.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009038 Motion Physical motion, i.e., a change in position of a body or subject as a result of an external force. It is distinguished from MOVEMENT, a process resulting from biological activity. Motions
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010037 Otolithic Membrane A gelatinous membrane overlying the acoustic maculae of SACCULE AND UTRICLE. It contains minute crystalline particles (otoliths) of CALCIUM CARBONATE and protein on its outer surface. In response to head movement, the otoliths shift causing distortion of the vestibular hair cells which transduce nerve signals to the BRAIN for interpretation of equilibrium. Otoconia,Otoliths,Statoconia,Membrane, Otolithic,Membranes, Otolithic,Otoconias,Otolith,Otolithic Membranes,Statoconias
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003243 Consciousness Sense of awareness of self and of the environment. Consciousnesses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012444 Saccule and Utricle Two membranous sacs within the vestibular labyrinth of the INNER EAR. The saccule communicates with COCHLEAR DUCT through the ductus reuniens, and communicates with utricle through the utriculosaccular duct from which the ENDOLYMPHATIC DUCT arises. The utricle and saccule have sensory areas (acoustic maculae) which are innervated by the VESTIBULAR NERVE. Otolithic Organs,Utricle,Saccule,Organ, Otolithic,Otolithic Organ,Saccules,Utricle and Saccule,Utricles
D014726 Vestibular Nuclei The four cellular masses in the floor of the fourth ventricle giving rise to a widely dispersed special sensory system. Included is the superior, medial, inferior, and LATERAL VESTIBULAR NUCLEUS. (From Dorland, 27th ed) Schwalbe Nucleus,Vestibular Nucleus, Medial,Schwalbe's Nucleus,Medial Vestibular Nucleus,Nuclei, Vestibular,Nucleus, Medial Vestibular,Nucleus, Schwalbe,Nucleus, Schwalbe's,Schwalbes Nucleus

Related Publications

C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
January 1988, Experimental brain research,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
January 1988, Experimental brain research,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
May 1992, Annals of the New York Academy of Sciences,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
April 1977, Experimental brain research,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
January 1989, Progress in brain research,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
September 1979, Experimental brain research,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
November 1988, Journal of neurophysiology,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
August 1978, Experimental brain research,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
January 1980, Acta oto-laryngologica,
C Xerri, and J Barthélémy, and F Harlay, and L Borel, and M Lacour
January 2000, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology,
Copied contents to your clipboard!