UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation. 2022

Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.

Stimulator of interferon genes (STING) is a pivotal innate immune adaptor, and its functions during DNA virus infections have been extensively documented. However, its homeostatic regulation is not well understood. Our study demonstrates that Unc-93 homolog B1 (UNC93B1) is a crucial checker for STING to prevent hyperactivation. Ectopic expression of UNC93B1 attenuates IFN-β promoter activity and the transcriptions of IFN-β, ISG54, and ISG56 genes. Moreover, UNC93B1 also blocks the IRF3 nuclear translocation induced by ectopic expression of both cyclic GMP-AMP synthase (cGAS) and STING and reduces the stability of STING by facilitating its autophagy-lysosome degradation, which can be reversed by lysosome inhibitors. Mechanistically, UNC93B1 interacts with STING and suppresses STING-activated downstream signaling by delivering STING to the lysosomes for degradation, depending on its trafficking capability. UNC93B1 knockout in human embryonic kidney 293T cells facilitates IFN-β promoter activity, IFN-β, ISG54, and ISG56 transcriptions, and IRF3 nuclear translocation induced by ectopic expression of cGAS and STING. Infected with herpes simplex virus-1 (HSV-1), UNC93B1 knockdown BJ cells or primary peritoneal macrophages from Unc93b1-deficient (Unc93b1-/- ) mice show enhanced IFN-β, ISG54, and ISG56 transcriptions, TBK1 phosphorylation, and reduced STING degradation and viral replication. In addition, Unc93b1-/-  mice exhibit higher IFN-β, ISG54, and ISG56 transcriptions and lower mortality upon HSV-1 infection in vivo. Collectively, these findings demonstrate that UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation and provide novel insights into the function of UNC93B1 in antiviral innate immunity.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016899 Interferon-beta One of the type I interferons produced by fibroblasts in response to stimulation by live or inactivated virus or by double-stranded RNA. It is a cytokine with antiviral, antiproliferative, and immunomodulating activity. Interferon, Fibroblast,beta-Interferon,Fiblaferon,Interferon, beta,Interferon, beta-1,Interferon-beta1,beta-1 Interferon,Fibroblast Interferon,Interferon beta,Interferon beta1,Interferon, beta 1,beta 1 Interferon,beta Interferon
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
May 2024, Virology journal,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
January 2024, Neoplasia (New York, N.Y.),
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
July 2021, European journal of immunology,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
February 2023, Autophagy,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
December 2020, Acta pharmaceutica Sinica. B,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
December 2023, The Kaohsiung journal of medical sciences,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
January 2020, Drug discovery today,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
August 2022, European journal of medicinal chemistry,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
December 2023, Mechanisms of ageing and development,
Huifang Zhu, and Rongzhao Zhang, and Li Yi, and Yan-Dong Tang, and Chunfu Zheng
January 2024, International journal of biological sciences,
Copied contents to your clipboard!