An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. 2022

Shu-Yu Chen, and Martin Zacharias
Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany.

Amyloid precursor protein (APP) is cleaved and processed sequentially by γ-secretase yielding amyloid β (Aβ) peptides of different lengths. Longer Aβ peptides are associated with the formation of neurotoxic plaques related to Alzheimer's disease. Based on the APP substrate-bound structure of γ-secretase, we investigated the enzyme-substrate interaction using molecular dynamics simulations and generated model structures that represent the sequentially cleaved intermediates during the processing reaction. The simulations indicated an internal docking site providing strong enzyme-substrate packing interaction. In the enzyme-substrate complex, it is located close to the region where the helical conformation of the substrate is interrupted and continues toward the active site in an extended conformation. The internal docking site consists of two non-polar pockets that are preferentially filled by large hydrophobic or aromatic substrate side chains to stabilize binding. Placement of smaller residues such as glycine can trigger a shift in the cleavage pattern during the simulations or results in destabilization of substrate binding. The reduced packing by smaller residues also influences the hydration of the active site and the formation of a catalytically active state. The simulations on processed substrate intermediates and a substrate G33I mutation offer an explanation of the experimentally observed relative increase of short Aβ fragment production for this mutation. In addition, studies on a substrate K28A mutation indicate that the internal docking site opposes the tendency of substrate dissociation due to a hydrophobic mismatch at the membrane boundary caused by K28 during processing and substrate movement toward the enzyme active site. The proposed internal docking site could also be useful for the specific design of new γ-secretase modulators.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000544 Alzheimer Disease A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57) Acute Confusional Senile Dementia,Alzheimer's Diseases,Dementia, Alzheimer Type,Dementia, Senile,Presenile Alzheimer Dementia,Senile Dementia, Alzheimer Type,Alzheimer Dementia,Alzheimer Disease, Early Onset,Alzheimer Disease, Late Onset,Alzheimer Sclerosis,Alzheimer Syndrome,Alzheimer Type Senile Dementia,Alzheimer's Disease,Alzheimer's Disease, Focal Onset,Alzheimer-Type Dementia (ATD),Dementia, Presenile,Dementia, Primary Senile Degenerative,Early Onset Alzheimer Disease,Familial Alzheimer Disease (FAD),Focal Onset Alzheimer's Disease,Late Onset Alzheimer Disease,Primary Senile Degenerative Dementia,Senile Dementia, Acute Confusional,Alzheimer Dementias,Alzheimer Disease, Familial (FAD),Alzheimer Diseases,Alzheimer Type Dementia,Alzheimer Type Dementia (ATD),Alzheimers Diseases,Dementia, Alzheimer,Dementia, Alzheimer-Type (ATD),Familial Alzheimer Diseases (FAD),Presenile Dementia,Sclerosis, Alzheimer,Senile Dementia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D016229 Amyloid beta-Peptides Peptides generated from AMYLOID BETA-PEPTIDES PRECURSOR. An amyloid fibrillar form of these peptides is the major component of amyloid plaques found in individuals with Alzheimer's disease and in aged individuals with trisomy 21 (DOWN SYNDROME). The peptide is found predominantly in the nervous system, but there have been reports of its presence in non-neural tissue. Alzheimer beta-Protein,Amyloid Protein A4,Amyloid beta-Peptide,Amyloid beta-Protein,beta Amyloid,beta-Amyloid Protein,Alzheimer's ABP,Alzheimer's Amyloid Fibril Protein,Amyloid AD-AP,Amyloid Fibril Protein, Alzheimer's,Amyloid beta-Proteins,ABP, Alzheimer's,AD-AP, Amyloid,Alzheimer ABP,Alzheimer beta Protein,Alzheimers ABP,Amyloid AD AP,Amyloid beta Peptide,Amyloid beta Peptides,Amyloid beta Protein,Amyloid beta Proteins,Amyloid, beta,Protein A4, Amyloid,Protein, beta-Amyloid,beta Amyloid Protein,beta-Peptide, Amyloid,beta-Peptides, Amyloid,beta-Protein, Alzheimer,beta-Protein, Amyloid,beta-Proteins, Amyloid
D016564 Amyloid beta-Protein Precursor A single-pass type I membrane protein. It is cleaved by AMYLOID PRECURSOR PROTEIN SECRETASES to produce peptides of varying amino acid lengths. A 39-42 amino acid peptide, AMYLOID BETA-PEPTIDES is a principal component of the extracellular amyloid in SENILE PLAQUES. Amyloid A4 Protein Precursor,Amyloid Protein Precursor,beta-Amyloid Protein Precursor,Amyloid beta Precursor Protein,Protease Nexin 2,Protease Nexin II,Amyloid beta Protein Precursor,Nexin 2, Protease,Nexin II, Protease,beta Amyloid Protein Precursor,beta-Protein Precursor, Amyloid
D053829 Amyloid Precursor Protein Secretases Endopeptidases that are specific for AMYLOID PROTEIN PRECURSOR. Three secretase subtypes referred to as alpha, beta, and gamma have been identified based upon the region of amyloid protein precursor they cleave. APP Secretase,Amyloid Precursor Protein Secretase,Secretase,Secretases,alpha-Secretase,beta-Secretase,gamma-Secretase,Secretase, APP,alpha Secretase,beta Secretase,gamma Secretase
D056004 Molecular Dynamics Simulation A computer simulation developed to study the motion of molecules over a period of time. Molecular Dynamics Simulations,Molecular Dynamics,Dynamic, Molecular,Dynamics Simulation, Molecular,Dynamics Simulations, Molecular,Dynamics, Molecular,Molecular Dynamic,Simulation, Molecular Dynamics,Simulations, Molecular Dynamics

Related Publications

Shu-Yu Chen, and Martin Zacharias
November 2010, Nature communications,
Shu-Yu Chen, and Martin Zacharias
July 2016, Journal of molecular graphics & modelling,
Shu-Yu Chen, and Martin Zacharias
September 2020, Seminars in cell & developmental biology,
Shu-Yu Chen, and Martin Zacharias
December 2023, ACS chemical neuroscience,
Shu-Yu Chen, and Martin Zacharias
June 1999, Biophysical journal,
Copied contents to your clipboard!