Analysis of the glucocorticoid antagonist action of dexamethasone 21-mesylate in HeLa S3 cells. 1987

P P Scheible, and T M DeLorenzo, and J A Cidlowski

Several properties of human glucocorticoid receptors complexed to the synthetic glucocorticoid agonists dexamethasone (DEX) and triamcinolone acetonide (TA) and the antagonist dexamethasone 21-mesylate (DM) are compared in an attempt to define the mode of action of DM. Both DEX and TA induce an increase in alkaline phosphatase activity in HeLa S3 cells. Not only is DM without effect on alkaline phosphatase activity at concentrations as great as 10(-7) M, it blocks the action of DEX and TA on enzyme induction, thus acting as a pure antagonist in this system. DM-receptor complexes, like agonist-receptor complexes, are recovered in the cytosol when cells are incubated with ligand at 0 degrees C but are recovered from the nucleus when incubation is shifted to 37 degrees C, suggesting that activation of the antagonist-receptor complex occurs in vivo. The molecular species that undergoes this temperature-dependent shift from the cytosolic compartment to the nuclear compartment exhibits saturable binding to the antagonist. Both the cytosolic and nuclear species exhibit a relative molecular mass of approximately equal to 94,000 Daltons when analysed by SDS-polyacrylamide gel electrophoresis. Receptors labeled in intact cells with [3H]DM at 0 degrees C sediment at approximately 8S in sucrose gradients, shifting to 4S when the gradients contain 0.4 M KCl. DEX- and TA-labeled receptors show the same sedimentation behavior, which has been accepted as one criterion of receptor subunit dissociation, or activation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

P P Scheible, and T M DeLorenzo, and J A Cidlowski
December 1985, Biochemistry,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
June 1981, Proceedings of the National Academy of Sciences of the United States of America,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
March 1982, Journal of steroid biochemistry,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
December 1981, Endocrinology,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
January 1987, Journal of steroid biochemistry,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
January 1981, Journal of steroid biochemistry,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
December 1984, Journal of steroid biochemistry,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
September 1982, Journal of steroid biochemistry,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
January 1980, Biochemical and biophysical research communications,
P P Scheible, and T M DeLorenzo, and J A Cidlowski
April 1980, Archives of biochemistry and biophysics,
Copied contents to your clipboard!