Prenatal diagnosis and detection of carriers with DNA probes in Duchenne's muscular dystrophy. 1987

B T Darras, and J F Harper, and U Francke

We performed genetic analyses for the prenatal diagnosis of Duchenne's muscular dystrophy and detection of the carrier state in five families with seven pregnancies at risk for the disease. As genetic markers for the disorder, we used DNA-sequence polymorphisms detected with 12 different DNA probes derived from the vicinity of the Duchenne's muscular dystrophy locus or from within the gene, on the X chromosome. One male fetus of a proved carrier mother was predicted to be unaffected, and this was confirmed after birth. Another male fetus was predicted to be unaffected (probability, 95 percent or greater), although a crossover event had been identified in a region of the X chromosome thought to be distal to the Duchenne gene. Unfortunately, an elevated serum creatine kinase level after birth indicated that the infant had inherited the Duchenne mutation. Three male fetuses predicted to be affected with 66 percent or 95 percent probabilities were aborted, and the presence of the DNA-marker alleles was confirmed in fetal tissues. In one family, in which the maternal grandparents were unavailable, the initial genetic interpretation had to be revised after a second male fetus was analyzed with intragenic probes. Our experience suggests that despite the large number of intragenic and flanking DNA polymorphisms available, uncertainties often remain in the prenatal diagnosis of Duchenne's muscular dystrophy. Pitfalls are presented by the large size of the region in which Duchenne's mutations can occur. Crossover events in this region, which result in an exchange of DNA between two X chromosomes, can render DNA-marker studies inaccurate. Also, an autosomal recessive mutation can produce the same clinical picture.

UI MeSH Term Description Entries
D008297 Male Males
D009136 Muscular Dystrophies A heterogeneous group of inherited MYOPATHIES, characterized by wasting and weakness of the SKELETAL MUSCLE. They are categorized by the sites of MUSCLE WEAKNESS; AGE OF ONSET; and INHERITANCE PATTERNS. Muscular Dystrophy,Myodystrophica,Myodystrophy,Dystrophies, Muscular,Dystrophy, Muscular,Myodystrophicas,Myodystrophies
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011296 Prenatal Diagnosis Determination of the nature of a pathological condition or disease in the postimplantation EMBRYO; FETUS; or pregnant female before birth. Diagnosis, Prenatal,Fetal Diagnosis,Fetal Imaging,Fetal Screening,Intrauterine Diagnosis,Antenatal Diagnosis,Antenatal Screening,Diagnosis, Antenatal,Diagnosis, Intrauterine,Prenatal Screening,Antenatal Diagnoses,Antenatal Screenings,Diagnosis, Fetal,Fetal Diagnoses,Fetal Imagings,Fetal Screenings,Imaging, Fetal,Intrauterine Diagnoses,Prenatal Diagnoses,Prenatal Screenings,Screening, Antenatal,Screening, Fetal,Screening, Prenatal
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D003434 Crossing Over, Genetic The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes. Crossing Over,Crossing-Over, Genetic,Crossing Overs,Genetic Crossing Over,Genetic Crossing-Over
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D005315 Fetal Diseases Pathophysiological conditions of the FETUS in the UTERUS. Some fetal diseases may be treated with FETAL THERAPIES. Embryopathies,Disease, Fetal,Diseases, Fetal,Embryopathy,Fetal Disease
D006580 Genetic Carrier Screening Identification of individuals who are heterozygous at a GENETIC LOCUS for a recessive PHENOTYPE. Carriers, Genetic, Detection,Genetic Carriers, Detection,Heterozygote Detection,Carrier Detection, Genetic,Detection, Genetic Carrier,Genetic Carrier Detection,Heterozygote Screening,Carrier Screening, Genetic,Detection, Heterozygote,Screening, Genetic Carrier,Screening, Heterozygote,Screenings, Genetic Carrier

Related Publications

B T Darras, and J F Harper, and U Francke
February 1988, Anales espanoles de pediatria,
B T Darras, and J F Harper, and U Francke
October 1987, The New England journal of medicine,
B T Darras, and J F Harper, and U Francke
June 1977, Lancet (London, England),
B T Darras, and J F Harper, and U Francke
November 1977, The New England journal of medicine,
B T Darras, and J F Harper, and U Francke
January 1990, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova (Moscow, Russia : 1952),
B T Darras, and J F Harper, and U Francke
May 1991, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
B T Darras, and J F Harper, and U Francke
July 1994, Zhonghua fu chan ke za zhi,
B T Darras, and J F Harper, and U Francke
April 1991, The American journal of the medical sciences,
B T Darras, and J F Harper, and U Francke
January 1988, Australian paediatric journal,
B T Darras, and J F Harper, and U Francke
January 1985, Duodecim; laaketieteellinen aikakauskirja,
Copied contents to your clipboard!