Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. 2022

Chaofeng Li, and Chenglan Liu
Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China. Electronic address: chaofengli09@163.com.

Prothioconazole, a chiral triazole fungicide, is widely used to control Fusarium head blight (FHB) of wheat. Fusarium graminearum (F. graminearum), as the main pathogen of FHB, can produce many secondary metabolites including deoxynivalenol (DON), which threatens the health of humans and animals. However, some fungicides may stimulate F. graminearum to synthesize more DON under certain conditions. Until now, the fungicidal activity and enantioselective effect of prothioconazole enantiomers on DON production, transcriptome and metabolome of F. graminearum were unclear. The fungicidal activity of R-(-)-prothioconazole against F. graminearum was 9.12-17.73 times higher than that of S-(+)-prothioconazole under all conditions. Prothioconazole enantiomers can induce F. graminearum to synthesize more DON under 0.99 water activity (aw) and 30 °C, especially R-(-)-prothioconazole. The expression levels of TRI6, TRI10 and TRI101 under R-(-)-prothioconazole treatment were significantly higher than those under S-(+)-prothioconazole treatment. Most genes in glycolysis, pyruvate metabolism, the target of rapamycin (TOR) signaling transduction pathway and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling transduction pathway showed higher expression levels under R-(-)-prothioconazole treatment than uner S-(+)-prothioconazole treatment and the control. The peroxisome pathway displayed higher transcriptional activity under S-(+)-prothioconazole treatment compared with R-(-)-prothioconazole and the control. Based on metabolomic data, R-(-)-prothioconazole can significantly influence phenylalanine metabolism, and no significantly enriched pathway was found under S-(+)-prothioconazole treatment. These results are helpful to understand the risk of prothioconazole enantiomers on DON production of F. graminearum and uncover the relevant underlying mechanisms of prothioconazole enantiomers.

UI MeSH Term Description Entries
D010935 Plant Diseases Diseases of plants. Disease, Plant,Diseases, Plant,Plant Disease
D005659 Fungicides, Industrial Chemicals that kill or inhibit the growth of fungi in agricultural applications, on wood, plastics, or other materials, in swimming pools, etc. Industrial Fungicides
D005670 Fusarium A mitosporic Hypocreales fungal genus, various species of which are important parasitic pathogens of plants and a variety of vertebrates. Teleomorphs include GIBBERELLA. Fusariums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D014230 Triazoles Heterocyclic compounds containing a five-membered ring with two carbon atoms and three nitrogen atoms with the molecular formula C2H3N3. Triazole
D014255 Trichothecenes Usually 12,13-epoxytrichothecenes, produced by Fusaria, Stachybotrys, Trichoderma and other fungi, and some higher plants. They may contaminate food or feed grains, induce emesis and hemorrhage in lungs and brain, and damage bone marrow due to protein and DNA synthesis inhibition. Epoxytrichothecenes,Trichothecene Epoxides,Epoxides, Trichothecene

Related Publications

Chaofeng Li, and Chenglan Liu
September 2018, The Science of the total environment,
Chaofeng Li, and Chenglan Liu
April 2019, Environmental pollution (Barking, Essex : 1987),
Chaofeng Li, and Chenglan Liu
June 2023, International journal of biological macromolecules,
Copied contents to your clipboard!