Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. 2022

Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Malaysia.

Cardiac arrhythmia is a leading cause of cardiovascular disease, with a high fatality rate worldwide. The timely diagnosis of cardiac arrhythmias, determined by irregular and fast heart rate, may help lower the risk of strokes. Electrocardiogram signals have been widely used to identify arrhythmias due to their non-invasive approach. However, the manual process is error-prone and time-consuming. A better alternative is to utilize deep learning models for early automatic identification of cardiac arrhythmia, thereby enhancing diagnosis and treatment. In this article, a novel deep learning model, combining convolutional neural network and bi-directional long short-term memory, is proposed for arrhythmia classification. Specifically, the classification comprises five different classes: non-ectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown (Q) beats. The proposed model is trained, validated, and tested using MIT-BIH and St-Petersburg data sets separately. Also, the performance was measured in terms of precision, accuracy, recall, specificity, and f1-score. The results show that the proposed model achieves training, validation, and testing accuracies of 100%, 98%, and 98%, respectively with the MIT-BIH data set. Lower accuracies were shown for the St-Petersburg data set. The performance of the proposed model based on the MIT-BIH data set is also compared with the performance of existing models based on the MIT-BIH data set.

UI MeSH Term Description Entries

Related Publications

Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
December 2019, Sensors (Basel, Switzerland),
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
January 2022, Frontiers in public health,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
December 2021, The Journal of chemical physics,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
September 2022, Computers in biology and medicine,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
September 2022, Integrative zoology,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
January 2022, Computational intelligence and neuroscience,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
January 2021, PeerJ. Computer science,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
January 2022, Biomedical signal processing and control,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
February 2020, The Journal of the Acoustical Society of America,
Shahab Ul Hassan, and Mohd S Mohd Zahid, and Talal Aa Abdullah, and Khaleel Husain
February 2020, The Science of the total environment,
Copied contents to your clipboard!