Solubilization and reconstitution of hepatic System A-mediated amino acid transport. Preparation of proteoliposomes containing glucagon-stimulated transport activity. 1987

D S Bracy, and M A Schenerman, and M S Kilberg

System A-mediated amino acid transport activity from rat liver plasma membrane vesicles has been solubilized and reconstituted into proteoliposomes using a freeze-thaw-dilution technique. The presence of cholate, at a cholate to protein ratio of 1:1, during the freeze-thaw step resulted in an enhancement in recoverable transport activity. The carrier required both phosphatidylcholine and phosphatidylethanolamine for optimal activity, but the addition of cholesterol to the reconstitution procedure appeared to have no significant effect on the resulting activity. A lipid to protein ratio of 20:1 yielded maximal transport activity. Sonication of the proteoliposomes provided some improvement in the accuracy of replicate assays for a given proteoliposome preparation. Isolated liver plasma membrane vesicles prepared from rats treated in vivo with glucagon in combination with dexamethasone contained stimulated System A activity. This enhanced transport activity could be solubilized and recovered in proteoliposomes generated from these plasma membranes. The data support the proposal that hormone regulation of the hepatic System A gene results in the de novo synthesis and plasma membrane insertion of the carrier protein itself.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor

Related Publications

D S Bracy, and M A Schenerman, and M S Kilberg
March 1989, The Journal of biological chemistry,
D S Bracy, and M A Schenerman, and M S Kilberg
February 1991, The Biochemical journal,
D S Bracy, and M A Schenerman, and M S Kilberg
April 1986, Biochimica et biophysica acta,
D S Bracy, and M A Schenerman, and M S Kilberg
October 1992, The Journal of biological chemistry,
D S Bracy, and M A Schenerman, and M S Kilberg
November 1993, The Journal of biological chemistry,
D S Bracy, and M A Schenerman, and M S Kilberg
January 1999, Cell biology international,
D S Bracy, and M A Schenerman, and M S Kilberg
January 1998, Methods in enzymology,
D S Bracy, and M A Schenerman, and M S Kilberg
June 1995, Biochimica et biophysica acta,
D S Bracy, and M A Schenerman, and M S Kilberg
November 1985, Molecular and cellular endocrinology,
D S Bracy, and M A Schenerman, and M S Kilberg
August 1985, The Journal of biological chemistry,
Copied contents to your clipboard!