Muscle models: what is gained and what is lost by varying model complexity. 1987

J M Winters, and L Stark

Three structurally different types of models have evolved over the years to describe muscle-joint systems. The first, based on an input-output analysis of a given task, results in a simple second-order differential equation description that is adequate over a certain movement operating range. The second, based on the classic structural model of Hill (1938), results in a higher-order nonlinear model described by ordinary differential equations. The third, based on an analysis of the biophysical contractile mechanism, results in a complex partial differential equation description. The advantages and disadvantages of each type of model are considered, based on the criteria of identifying the simplest model that can adequately simulate any fundamental type of human movement without modifying model parameters for different tasks. It is shown that an eighth-order Hill-based antagonistic muscle-joint model is able to satisfy these criteria for a given joint if each of the four basic mechanically-significant non-linearities of the system are included in the model. This same model structure has been used successfully for eight different muscle-joint systems, ranging in size from knee flexion-extension to eye rotation--the only difference between the models is in the parameter values. Second-order models are shown to be task-specific special cases of the input-output behavior of the eighth-order model, while the more complex biophysical models are hypothesized to have insignificant advantages and many disadvantages over the Hill-based model during normal human movement.

UI MeSH Term Description Entries
D007596 Joints Also known as articulations, these are points of connection between the ends of certain separate bones, or where the borders of other bones are juxtaposed. Joint
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J M Winters, and L Stark
September 2019, Clinics in laboratory medicine,
J M Winters, and L Stark
January 2021, Journal of professional nursing : official journal of the American Association of Colleges of Nursing,
J M Winters, and L Stark
October 2019, Brain : a journal of neurology,
J M Winters, and L Stark
June 2010, AIDS and behavior,
J M Winters, and L Stark
December 2023, The journal of physical chemistry letters,
J M Winters, and L Stark
December 2010, Southern medical journal,
J M Winters, and L Stark
June 2020, Acta psychiatrica Scandinavica,
Copied contents to your clipboard!