Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. 2022

Min Wang, and Girbe Buist, and Jan Maarten van Dijl
Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands.

Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009238 N-Acetylmuramoyl-L-alanine Amidase An autolytic enzyme bound to the surface of bacterial cell walls. It catalyzes the hydrolysis of the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell wall glycopeptides, particularly peptidoglycan. EC 3.5.1.28. Mucopeptide Amidohydrolase,Autolysin,LE-Enzyme,Murein Hydrolase,Peptidoglycan Hydrolase,T7 Endolysin,T7 Lysozyme,Amidase, N-Acetylmuramoyl-L-alanine,Amidohydrolase, Mucopeptide,Endolysin, T7,Hydrolase, Murein,Hydrolase, Peptidoglycan,LE Enzyme,Lysozyme, T7,N Acetylmuramoyl L alanine Amidase
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D014774 Virulence The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS. Pathogenicity
D055624 Methicillin-Resistant Staphylococcus aureus A strain of Staphylococcus aureus that is non-susceptible to the action of METHICILLIN. The mechanism of resistance usually involves modification of normal or the presence of acquired PENICILLIN BINDING PROTEINS. MRSA,Methicillin Resistant Staphylococcus aureus

Related Publications

Min Wang, and Girbe Buist, and Jan Maarten van Dijl
September 2023, Nature communications,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
December 2012, Applied microbiology and biotechnology,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
July 1972, Journal of bacteriology,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
October 1996, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
December 2012, Molecular microbiology,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
October 2018, Journal of bacteriology,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
December 2013, Current opinion in microbiology,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
March 1994, FEBS letters,
Min Wang, and Girbe Buist, and Jan Maarten van Dijl
November 1990, Biokhimiia (Moscow, Russia),
Copied contents to your clipboard!