The diffusion and electrogenic components of the membrane potential of hypoxic myocardium. 1987

N Leblanc, and E Ruiz-Ceretti

The diffusion and electrogenic components of the resting potential of hypoxic ventricular muscle were separated by inhibition of the sodium pump with 10(-4) M ouabain. The response to varying external K concentrations (Ko) was studied. Arterially perfused rabbit hearts were submitted to 60 min hypoxia in Krebs solution containing 5 mM K throughout or to different external K concentrations during the last 20 min of hypoxia. For K concentrations between 1.5 and 10 mM, hypoxia did not change the resting potential except for a slight hyperpolarization in 7.5 mM K. The diffusion component of the resting potential did not differ from the resting potential at Ko less than 5 mM. An electrogenic potential of -3 to -6 mV was detectable at Ko values between 5 and 10 mM. The internal K concentration, Ki, was estimated from extrapolations to zero potential of the relation resting potential vs. Ko in normoxic and hypoxic hearts. These experiments revealed a decline of Ki of 16 mM with hypoxia. The variation of the diffusion potential with external K was fitted by a PNa:PK ratio five times lower than in normoxia. It has been concluded that an increase in K permeability and the persistence of electrogenic Na extrusion during hypoxia of rather short duration prevent membrane depolarization despite the myocardial K loss.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Leblanc, and E Ruiz-Ceretti
May 1982, Journal of molecular and cellular cardiology,
N Leblanc, and E Ruiz-Ceretti
October 1987, Canadian journal of physiology and pharmacology,
N Leblanc, and E Ruiz-Ceretti
June 1978, The Journal of membrane biology,
N Leblanc, and E Ruiz-Ceretti
March 1988, Canadian journal of physiology and pharmacology,
N Leblanc, and E Ruiz-Ceretti
March 1975, The Journal of physiology,
N Leblanc, and E Ruiz-Ceretti
January 1969, Pflugers Archiv : European journal of physiology,
N Leblanc, and E Ruiz-Ceretti
March 1989, Journal of theoretical biology,
N Leblanc, and E Ruiz-Ceretti
November 1971, The Journal of physiology,
Copied contents to your clipboard!