Role of splenic stroma in the action of bacterial lipopolysaccharides on radiation mortality: a study in mice carrying the Slj allele. 1987

R E Ploemacher, and N H Brons

Slj/+ mice display a slight macrocytic anaemia due to a defect in their haemopoietic organ stroma. They have a deficient endogenous spleen colony (CFU-end) formation following sublethal doses of gamma-radiation compared with their normal +/+ littermates, which is likely to be due to the low pre-irradiation CFU-S content of the Slj/+ spleen. CFU-S in these congenic mice do not differ in their sensitivity to gamma-irradiation or stem cell-activating factor. While injection of +/+ mice with 10 micrograms of lipopolysaccharide-W (LPS) one day prior to irradiation led to a substantial increase in their survival, the survival of Slj/+ mice was only slightly increased. Irradiation induced a similar dose-related reduction in the numbers of CFU-S in the spleen and femora of LPS-injected Slj/+ mice compared to similarly treated +/+ mice when measured directly after irradiation. At Day 9 after irradiation, injection of LPS led to a significantly higher CFU-end formation and higher numbers of CFU-S and nucleated cells in the Slj/+ spleens compared to LPS-injected +/+ mice. No such differences in the radioprotective effect of LPS were observed in the +/+ and Slj/+ mice with respect to the splenic and femoral 59Fe-incorporation and the femoral CFU-S numbers at Day 9. These data strongly suggest a contribution by immigrating CFU-S to the CFU-S numbers and endogenous colony formation in at least the Slj/+ spleen after LPS injection and subsequent sublethal irradiation. The observations also imply that the splenic organ stroma may play a mediatory role in the radioprotective action of LPS. In addition, the data represent an extreme example of a lack of correlation between animal survival and haemopoietic parameters. Caution should be taken when applying endogenous colony counts as a means of screening potential anti-radiation drugs.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011837 Radiation-Protective Agents Drugs used to protect against ionizing radiation. They are usually of interest for use in radiation therapy but have been considered for other purposes, e.g. military. Radiation Protectant,Radiation Protective Agent,Radiation-Protective Agent,Radiation-Protective Drug,Radioprotective Agent,Radioprotective Agents,Radioprotective Drug,Agents, Radiation-Protective,Radiation Protectants,Radiation Protective Agents,Radiation-Protective Drugs,Radiation-Protective Effect,Radiation-Protective Effects,Radioprotective Drugs,Agent, Radiation Protective,Agent, Radiation-Protective,Agent, Radioprotective,Agents, Radiation Protective,Agents, Radioprotective,Drug, Radiation-Protective,Drug, Radioprotective,Drugs, Radiation-Protective,Drugs, Radioprotective,Effect, Radiation-Protective,Effects, Radiation-Protective,Protectant, Radiation,Protectants, Radiation,Protective Agent, Radiation,Protective Agents, Radiation,Radiation Protective Drug,Radiation Protective Drugs,Radiation Protective Effect,Radiation Protective Effects
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D005260 Female Females
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis

Related Publications

R E Ploemacher, and N H Brons
December 1973, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
R E Ploemacher, and N H Brons
December 2017, Genesis (New York, N.Y. : 2000),
R E Ploemacher, and N H Brons
September 1971, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie,
R E Ploemacher, and N H Brons
May 1983, Experimental hematology,
R E Ploemacher, and N H Brons
January 1964, Lo sperimentale,
R E Ploemacher, and N H Brons
January 2004, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
R E Ploemacher, and N H Brons
January 1990, International reviews of immunology,
Copied contents to your clipboard!