Cell cycle analysis during retinoic acid induced differentiation of a human embryonal carcinoma-derived cell line. 1987

C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat

Several subclones of the human embryonal carcinoma (EC) cell line Tera-2 can be induced to differentiate in monolayer culture by retinoic acid (RA) to a flattened cell type with reduced growth rate. Using a method based on the transition probability model, we have analysed changes in cell cycle kinetics of Tera-2 cells during the differentiation process. Growth inhibition was shown to occur without a lag period and to be partly due to an increase in the duration of the S-phase, but with a relatively greater contribution from an increase in the duration of G1-phase. Since the fraction of the cell population in the G1-phase then doubled, cells accumulated in this part of the cycle. In contrast, the reduced proliferation rate of two murine EC cell lines, PC13 and P19, treated with RA occurs after a lag period of about two cell cycles and is mainly attributable to an increase in the duration of the S-phase. The results illustrate a differential response of human and murine EC cells to growth regulation by RA and again emphasize that although the stem cells of murine teratocarcinomas may provide a useful model, they are not identical to their human counterparts.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D014411 Neoplastic Stem Cells Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS. Cancer Stem Cells,Colony-Forming Units, Neoplastic,Stem Cells, Neoplastic,Tumor Stem Cells,Neoplastic Colony-Forming Units,Tumor Initiating Cells,Cancer Stem Cell,Cell, Cancer Stem,Cell, Neoplastic Stem,Cell, Tumor Initiating,Cell, Tumor Stem,Cells, Cancer Stem,Cells, Neoplastic Stem,Cells, Tumor Initiating,Cells, Tumor Stem,Colony Forming Units, Neoplastic,Colony-Forming Unit, Neoplastic,Initiating Cell, Tumor,Initiating Cells, Tumor,Neoplastic Colony Forming Units,Neoplastic Colony-Forming Unit,Neoplastic Stem Cell,Stem Cell, Cancer,Stem Cell, Neoplastic,Stem Cell, Tumor,Stem Cells, Cancer,Stem Cells, Tumor,Tumor Initiating Cell,Tumor Stem Cell,Unit, Neoplastic Colony-Forming,Units, Neoplastic Colony-Forming
D054278 Embryonal Carcinoma Stem Cells The malignant stem cells of TERATOCARCINOMAS, which resemble pluripotent stem cells of the BLASTOCYST INNER CELL MASS. The EC cells can be grown in vitro, and experimentally induced to differentiate. They are used as a model system for studying early embryonic cell differentiation. Embryonal Carcinoma Cells,F9 Embryonal Carcinoma Cells,F9 Teratocarcinoma Stem Cells,Teratocarcinoma Stem Cells,Carcinoma Cell, Embryonal,Carcinoma Cells, Embryonal,Cell, Embryonal Carcinoma,Cell, Teratocarcinoma Stem,Cells, Embryonal Carcinoma,Cells, Teratocarcinoma Stem,Embryonal Carcinoma Cell,Stem Cell, Teratocarcinoma,Stem Cells, Teratocarcinoma,Teratocarcinoma Stem Cell

Related Publications

C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
February 1985, Experimental cell research,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
March 1990, Developmental biology,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
March 1989, Biochemistry,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
June 1984, Developmental biology,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
October 1994, Experimental cell research,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
November 1990, The Journal of biological chemistry,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
December 1983, Molecular and cellular biology,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
April 1981, Experimental cell research,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
September 1985, Cancer research,
C L Mummery, and M A van Rooijen, and S E van den Brink, and S W de Laat
April 1989, Mechanisms of ageing and development,
Copied contents to your clipboard!