Nonuniformity of pericardial surface pressure in dogs. 1987

O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg

Previously, we have shown that pericardial constraint cannot be measured by true (hydrostatic) pressure except when an excess of pericardial fluid is present and that a device such as a balloon (which reflects radial contact stress as well as hydrostatic pressure) must be used. Since radial contact stress is the major component of the constraint exerted by the pericardium when little pericardial liquid is present, it follows that the pressure measured by the balloon might be different over different parts of the heart. In an attempt to test this hypothesis, in 11 anesthetized dogs we placed pericardial balloons over the right and left ventricular free walls, instrumented the animals to measure ventricular dimensions (sonomicrometry) and pressure, mounted pneumatic constrictors on the aortic and pulmonary artery, reapproximated the pericardium, and closed the chest under suction. We studied the transient effects of constrictions of the ascending aorta and pulmonary artery and of angiotensin infusion before and after intravenous saline infusion. Aortic constriction and, to a lesser degree, angiotensin increased pericardial pressure over the left ventricle more than over the right ventricle. Pulmonary artery occlusion increased pericardial pressure over the right ventricle but significantly decreased pericardial pressure over the left ventricle. We conclude that there are significant local differences in pericardial pressure (recorded by balloon) over the lateral ventricular surfaces during acute changes in afterload. These observations may be explained in part by decreased venous return to the contralateral ventricle, the tendency of the heart to resist lateral displacement, and the limited mobility of the pericardium.

UI MeSH Term Description Entries
D010496 Pericardium A conical fibro-serous sac surrounding the HEART and the roots of the great vessels (AORTA; VENAE CAVAE; PULMONARY ARTERY). Pericardium consists of two sacs: the outer fibrous pericardium and the inner serous pericardium. The latter consists of an outer parietal layer facing the fibrous pericardium, and an inner visceral layer (epicardium) resting next to the heart, and a pericardial cavity between these two layers. Epicardium,Fibrous Pericardium,Parietal Pericardium,Pericardial Cavity,Pericardial Space,Serous Pericardium,Visceral Pericardium,Cavities, Pericardial,Cavity, Pericardial,Pericardial Cavities,Pericardial Spaces,Pericardium, Fibrous,Pericardium, Parietal,Pericardium, Serous,Pericardium, Visceral,Pericardiums, Fibrous,Pericardiums, Serous,Serous Pericardiums,Space, Pericardial,Spaces, Pericardial
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D006874 Hydrostatic Pressure The pressure due to the weight of fluid. Hydrostatic Pressures,Pressure, Hydrostatic,Pressures, Hydrostatic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D013500 Surface Tension The force acting on the surface of a liquid, tending to minimize the area of the surface. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Interfacial Force,Interfacial Tension,Surface Tensions,Tension, Surface,Tensions, Surface
D014160 Transducers, Pressure Transducers that are activated by pressure changes, e.g., blood pressure. Pressure Transducer,Pressure Transducers,Transducer, Pressure

Related Publications

O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
October 2004, American journal of physiology. Heart and circulatory physiology,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
January 1967, Circulation research,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
December 1969, Journal of applied physiology,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
March 1989, The American journal of physiology,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
April 1995, The American journal of physiology,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
December 1969, Journal of applied physiology,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
August 1985, The American journal of physiology,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
April 2004, Langmuir : the ACS journal of surfaces and colloids,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
August 1986, The American journal of physiology,
O A Smiseth, and N W Scott-Douglas, and C R Thompson, and E R Smith, and J V Tyberg
January 1985, Circulation,
Copied contents to your clipboard!