Selective denaturation of several yeast enzymes by free fatty acids. 1978

P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni

The denaturation of eight purified yeast enzymes, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, alcohol dehydrogenase, beta-fructosidase, hexokinase and glucose-6-phosphate isomerase, promoted under controlled conditions by the free fatty acids myristic and oleic, is selective. Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1 oxidoreductase, EC 1.1.1.49) is extremely sensitive to destabilization and was studied in greater detail. Results show that chain length and degree of unsaturation of fatty acids are important to their destabilizing effect, and that ligands of the enzyme can afford protection. The denaturation process results in more than one altered form. These results can be viewed in the perspective of the possibility that amphipathic substances, and in particular free fatty acids, may play a role for enzyme degradation in vivo, by initiating steps of selective denaturation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010734 Phosphogluconate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43. 6-Phosphogluconate Dehydrogenase,6 Phosphogluconate Dehydrogenase,Dehydrogenase, 6-Phosphogluconate,Dehydrogenase, Phosphogluconate
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005631 Fructokinases A class of enzymes that catalyzes the phosphorylation of fructose in the presence of ATP. EC 2.7.1.-. Ketohexokinases
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005956 Glucose-6-Phosphate Isomerase An aldose-ketose isomerase that catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-phosphate. In prokaryotic and eukaryotic organisms it plays an essential role in glycolytic and gluconeogenic pathways. In mammalian systems the enzyme is found in the cytoplasm and as a secreted protein. This secreted form of glucose-6-phosphate isomerase has been referred to as autocrine motility factor or neuroleukin, and acts as a cytokine which binds to the AUTOCRINE MOTILITY FACTOR RECEPTOR. Deficiency of the enzyme in humans is an autosomal recessive trait, which results in CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA. Glucosephosphate Isomerase,Phosphoglucose Isomerase,Phosphohexose Isomerase,Autocrine Motility Factor,Isomerase, Glucose 6 Phosphate,Neuroleukin,Tumor Autocrine Motility Factor,Tumor-Cell Autocrine Motility Factor,Factor, Autocrine Motility,Glucose 6 Phosphate Isomerase,Isomerase, Glucose-6-Phosphate,Isomerase, Glucosephosphate,Isomerase, Phosphoglucose,Isomerase, Phosphohexose,Motility Factor, Autocrine,Tumor Cell Autocrine Motility Factor
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase

Related Publications

P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
June 1969, Journal of bacteriology,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
May 1967, Archives of biochemistry and biophysics,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
March 1978, European journal of biochemistry,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
November 2019, FEMS yeast research,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
January 1970, Biochemical and biophysical research communications,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
November 1970, The Journal of biological chemistry,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
March 1954, The Journal of pharmacology and experimental therapeutics,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
March 1993, The Journal of biological chemistry,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
January 1976, Oncology,
P Tortora, and G M Hanozet, and A Guerritore, and M T Vincenzini, and P Vanni
September 1967, The Biochemical journal,
Copied contents to your clipboard!