RNA adenosine deaminase (ADAR1) alleviates high-fat diet-induced nonalcoholic fatty liver disease by inhibiting NLRP3 inflammasome. 2022

Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.

Nonalcoholic fatty liver disease (NAFLD) is a chronic inflammatory disease in which nucleotide-binding domain of leucine-rich repeat protein 3 (NLRP3) inflammasome plays an important role. The present research was aimed to explore the protective function of ADAR1, an RNA editing enzyme, against inflammatory damages in high-fat diet (HFD)-induced NAFLD through inhibiting NLRP3 inflammasome and subsequent inflammation. A total of 30 patients with NAFLD were investigated, and ADAR1 mRNA expression in peripheral blood monocytes surveyed. The in vivo study used lentivirus to explore the function of ADAR1 overexpression in the HFD-induced mouse model of NAFLD. The in vitro study used lentivirus and siRNA to explore the function of ADAR1 on the NLRP3 inflammasome activation in THP-1 cells. Results shown that the ADAR1 expression was upregulated in NAFLD patients in comparison to healthy controls. In vivo, the upregulation of ADAR1 impaired NLRP3 inflammasome activation and alleviated liver disease in HFD mice in comparison to the control group. Moreover, ADAR1 overexpression attenuated NLRP3 inflammasome in lipopolysaccharide (LPS)+ palmitic acid (PA)-induced THP-1 cells, while ADAR1 knockdown increased the NLRP3 inflammasome activation. Furthermore, we speculated that c-Jun may participate in ADAR1's inhibition of NLRP3 inflammasome. Our results suggested that ADAR1 is a potential treatment target for NAFLD via regulating the activation of NLRP3 inflammasome.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D000071199 NLR Family, Pyrin Domain-Containing 3 Protein An NLR protein that contains an N-terminal PYRIN DOMAIN and ATP-binding site and 9 C-terminal LEUCINE-rich repeats; it is expressed primarily by MACROPHAGES. It is a core component of the INFLAMMASOME and directs its assembly in response to pathogen infection and damage-associated stimuli. Mutations in the NLRP3 gene are associated with FAMILIAL COLD AUTOINFLAMMATORY SYNDROME. Cold Autoinflammatory Syndrome 1 Protein,NACHT, LRR and PYD Domains-Containing Protein 3,NLRP3 Protein,NACHT, LRR and PYD Domains Containing Protein 3,NLR Family, Pyrin Domain Containing 3 Protein
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D058847 Inflammasomes Multiprotein complexes that mediate the activation of CASPASE-1. Dysregulation of inflammasomes has also been linked to a number of autoinflammatory and autoimmune disorders. Inflammasome,Pyroptosome,Pyroptosomes

Related Publications

Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
September 2021, Life sciences,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
May 2024, European journal of pharmacology,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
May 2021, Marine drugs,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
March 2020, Biochemical and biophysical research communications,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
October 2022, European journal of pharmacology,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
June 2022, Journal of translational medicine,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
October 2018, Biochemical and biophysical research communications,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
September 2020, European journal of pharmacology,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
August 2013, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Rong Xiang, and Yuxing Liu, and Liangliang Fan, and Boyue Jiang, and Fang Wang
January 2013, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Copied contents to your clipboard!