The influence of age on steroidogenic enzyme activities of the rat adrenal gland: enhanced expression of cholesterol side-chain cleavage activity. 1987

P Y Popplewell, and J Butte, and S Azhar

The ability of isolated adrenocortical cells to secrete corticosterone in response to ACTH challenge declines as rats age, but the site or mechanism(s) of this impairment is still unknown. To test the functionality of steroidogenic capacity per se, we measured the key enzyme activities involved in corticosterone biosynthesis. We also measured the mitochondrial cytochrome P-450 content and nonsteroidogenic enzymes specific for subcellular fractions. Mitochondria and microsomal fractions were isolated from the adrenals of 2-, 12-, and 18-month-old animals and used for various enzyme measurements. Mitochondrial side-chain cleavage enzyme activity (nanomoles per min mg protein-1) increased from a mean of 0.43 +/- 0.06 in 2-month-old rats to 1.26 +/- 0.11 and 1.51 +/- 0.06 in 12- and 18-month old rats, respectively. After incubation with 5-cholesten-3 beta,25-diol (25-hydroxycholesterol; 25 micrograms/ml) side-chain cleave activity rose to 5.0 +/- 0.6, 12.4 +/- 1.2, and 16 +/- 1.4 nmol min-1 mg protein-1 in adrenal mitochondrial fractions from 2-, 12-, and 18-month-old rats, respectively. In contrast, mitochondrial cytochrome P-450 content did not vary with advancing age. Microsomal delta 5-3 beta-hydroxysteroid dehydrogenase-delta 5-delta 4-isomerase activities were similar in 2- and 12-month-old rats, but 21-hydroxylase (nanomoles per min mg protein-1) activity was significantly increased in 12-month-old rats (2-month-old, 5.2 +/- 0.2; 12-month-old, 7.7 +/- 0.5). Finally, mitochondrial 11 beta-hydroxylase was comparable in both age groups. In addition, activities of mitochondrial nonsteroidogenic enzymes, such as monoamine oxidase, amytal insensitive NADH cytochrome c reductase, cytochrome c oxidase, succinate dehydrogenase, and malate dehydrogenase, did not change with age. It appears from the evidence presented that the activities of the steroidogenic enzymes are not responsible for the diminished capacity in corticosterone production seen with aging in the rat.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011284 Pregnenolone A 21-carbon steroid, derived from CHOLESTEROL and found in steroid hormone-producing tissues. Pregnenolone is the precursor to GONADAL STEROID HORMONES and the adrenal CORTICOSTEROIDS. 5-Pregnen-3-beta-ol-20-one,5 Pregnen 3 beta ol 20 one
D002786 Cholesterol Side-Chain Cleavage Enzyme A mitochondrial cytochrome P450 enzyme that catalyzes the side-chain cleavage of C27 cholesterol to C21 pregnenolone in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP11A1 gene, catalyzes the breakage between C20 and C22 which is the initial and rate-limiting step in the biosynthesis of various gonadal and adrenal steroid hormones. CYP11A1,Cholesterol Desmolase,Cholesterol Monooxygenase (Side-Chain-Cleaving),Cytochrome P-450 CYP11A1,Cytochrome P-450(scc),20,22-Desmolase,CYP 11A1,Cytochrome P450 11A1,Cytochrome P450scc,20,22 Desmolase,Cholesterol Side Chain Cleavage Enzyme,Cytochrome P 450 CYP11A1
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid

Related Publications

P Y Popplewell, and J Butte, and S Azhar
September 1972, The Biochemical journal,
P Y Popplewell, and J Butte, and S Azhar
April 1982, Biochimica et biophysica acta,
P Y Popplewell, and J Butte, and S Azhar
April 1974, Biochemistry,
P Y Popplewell, and J Butte, and S Azhar
October 1977, Steroids,
P Y Popplewell, and J Butte, and S Azhar
June 1967, Endocrinologia japonica,
P Y Popplewell, and J Butte, and S Azhar
July 1971, Biochimica et biophysica acta,
P Y Popplewell, and J Butte, and S Azhar
January 1972, Biochemical and biophysical research communications,
Copied contents to your clipboard!