The pathway for the de novo synthesis of a teichoic acid, poly(galactosylglycerol phosphate), in Bacillus coagulans AHU 1366 was studied by means of characterization and stepwise conversion of lipid-linked intermediates. Incubation of membranes with UDP-N-acetylglucosamine and UDP-glucose yielded a disaccharide-linked polyprenylpyrophosphate, whose sugar moiety was characterized as glucosyl(beta 1----4)N-acetylglucosamine (Glc-GlcNAc). By incubation with membranes and CDP-glycerol, Glc-GlcNAc-PP-prenol was converted to a series of glycolipids characterized as (Gro-P)1-6-Glc-GlcNAc-PP-prenol (Gro = glycerol). Glc-[14C]GlcNAc-PP-prenol was converted to polymer by incubation with membranes, CDP-glycerol and UDP-galactose. Smith degradation of the polymer gave two radioactive fragments corresponding to (Gro-P)3-Glc-GlcNAc and (Gro-P)4-Glc-GlcNAc. These results, together with data on gel chromatography of radioactive polymer synthesized from UDP-[3H]galactose, CDP-glycerol and Glc-[14C]GlcNAc-PP-prenol, led to the conclusion that in this strain poly(galactosylglycerol phosphate) is probably synthesized through the following pathway: GlcNAc-PP-prenol----Glc-GlcNAc-PP-prenol----(Gro-P)3-4 -Glc-GlcNAc-PP-prenol----(Gro-P-Gal)n- (Gro-P)3-4-Glc-GlcNAc-PP-prenol----(Gro-P-Gal)n- (Gro-P)3-4-Glc-GlcNAc-P-peptidoglycan complex.