Properties of allosteric nicotinamide mononucleotide glycohydrolase from Azotobacter vinelandii: activation and inhibition. 1987

T Imai

In order to clarify the regulation mechanism of NMN glycohydrolase, a number of purine and pyrimidine nucleotides were tested as activators for the enzyme. Among naturally occurring nucleotides, pppGpp was shown to be the most potent activator (KA = 0.0087 mM). The effectiveness of these nucleotides estimated from Vmax/KA was in the order: pppGpp greater than ppGpp greater than pppppG greater than ppppG greater than pGpp greater than GTP greater than or equal to 2'-GMP greater than or equal to GppppG greater than dGTP greater than ITP greater than GDP = 2'-O-methylGTP. XTP, UTP, dTTP gave no effect. In contrast, ATP, CTP, and 7-methylGTP were inhibitory. A comparison of the data indicated that activation of the enzyme is specific for the base structure, guanine, and that effectiveness of nucleotides as activators results from the negatively charged phosphate moiety. Consistent with these results, inorganic polyphosphates (tri-, tetra-, and pentaphosphate) and 5-phosphoribose 1-pyrophosphate were shown to function as inhibitors of the enzyme. The inhibition mechanism was shown to be competitive with GTP. However, apparent Ki values for these inhibitors were dependent on the activator concentration. Furthermore, a shift of cooperativity type and progressive increase of positive cooperativity concomitant with increase of PRPP concentration were observed. These results indicate that this enzyme may be allosteric and an important regulatory component of pyridine nucleotide cycle metabolism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011122 Polyphosphates Linear polymers in which orthophosphate residues are linked with energy-rich phosphoanhydride bonds. They are found in plants, animals, and microorganisms. Polyphosphate
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D001395 Azotobacter A genus of gram-negative, aerobic bacteria found in soil and water. Its organisms occur singly, in pairs or irregular clumps, and sometimes in chains of varying lengths.
Copied contents to your clipboard!