Cell attachment and long-term growth on derivatizable polyacrylamide surfaces. 1987

B K Brandley, and O A Weisz, and R L Schnaar

Important cellular characteristics, including selective adhesion, growth rate, motility, and differentiation, are controlled, in part, by signals received at the cell surface. The molecular mechanisms for the cell surface control of these cell behaviors are largely unknown. In order to probe the role of specific extracellular molecules in controlling cell function, we report the development of synthetic surfaces which generally support the long-term growth of cells yet can be readily derivatized with a wide variety of molecules of biological interest. Polyacrylamide gels containing a gradient of active ester groups were prepared and then the esters were displaced with ligands to generate a gradient of carboxylic acid, tertiary amine, or hydroxyl groups. When untransformed mouse fibroblasts (BALB/3T3) were seeded on the various surfaces, they attached and grew only on those derivatized with carboxylic acids or hydroxyl groups within narrow concentration ranges. Cell growth rate, density, and morphology on polyacrylamide gels containing the optimal concentration of carboxylic acid groups (approximately 30 mumol/ml) were comparable to those on tissue culture plastic, whereas growth on hydroxyl group-derivatized gels was less extensive. In contrast, short-term (90-min) adhesion to hydroxyl group-derivatized gels was greater than that to carboxylic acid-derivatized gels. Both short-term adhesion and long-term growth required serum. Growth-supportive polyacrylamide gels were readily derivatized with molecules of biological interest. The techniques reported here are applicable to other types of cell in culture since the nature and concentration of substratum functional groups can be easily varied and tested for support of long-term cell growth.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

B K Brandley, and O A Weisz, and R L Schnaar
March 2014, Journal of mathematical biology,
B K Brandley, and O A Weisz, and R L Schnaar
November 2019, British dental journal,
B K Brandley, and O A Weisz, and R L Schnaar
January 2017, International journal of computerized dentistry,
B K Brandley, and O A Weisz, and R L Schnaar
December 2013, Langmuir : the ACS journal of surfaces and colloids,
B K Brandley, and O A Weisz, and R L Schnaar
November 1964, Journal of bacteriology,
B K Brandley, and O A Weisz, and R L Schnaar
January 1997, Journal of colloid and interface science,
B K Brandley, and O A Weisz, and R L Schnaar
November 2013, Advanced materials (Deerfield Beach, Fla.),
B K Brandley, and O A Weisz, and R L Schnaar
July 2003, Biomaterials,
B K Brandley, and O A Weisz, and R L Schnaar
February 2019, Current opinion in psychology,
Copied contents to your clipboard!