Spatial distribution of axon collaterals of single inferior olive neurons. 1987

A Rosina, and L Provini

The aim of this study was to define the overall distribution pattern of the axon collaterals of single inferior olive (IO) neurons in relation to the multiple somatotopic maps defined by the climbing fiber (CF) input through the cerebellar cortex. In a previous study (Rosina and Provini: Brain Res. 289:45-63, '83), it was shown that the IO neurons supply interlobar collaterals to pairs of somatotopically related areas in the intermediate part of the anterior lobe (PIAL), in the paramedian lobule (PML), in crus II, and in the simple lobule, within strips C1 to D2. The residual branches then could either distribute within single folia or to adjacent folia within each somatotopically defined cerebellar area or both. We studied whether or not the IO axons branch over neighboring folia of the face-forelimb (FL) areas of PIAL and PML and how this interfolial branching relates to the interlobar collateralization by using the multiple fluorescent retrograde tracing technique. The main results of the study were as follows: the axons from neurons in IO subdivisions that are related to strips C1-C3 give off two interfolial branches in the FL area of PIAL and practically no interfolial collaterals are given in the FL area of PML; and the neurons that give off interfolial collaterals also give interlobar branches. From these data we have inferred the general branching pattern of the IO neurons that convey FL information to PIAL and PML. Each neuron gives off two interlobar collaterals: the branch directed to PIAL splits again into two interfolial collaterals, while each of these three collaterals should give off about three branches within each target folium to account for the ten collaterals estimated to be present in the cat. The distribution pattern of IO axon collaterals proposed here suggests that the same CF-relayed information may interact, at the Purkinje cell level, with different sets of mossy fiber inputs. The effect of this interaction would be to modulate the motor commands forwarded to specific muscle groups in relation to the different conditions under which a given movement is executed.

UI MeSH Term Description Entries
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

A Rosina, and L Provini
February 2018, The Journal of comparative neurology,
A Rosina, and L Provini
January 1983, Proceedings of the Western Pharmacology Society,
A Rosina, and L Provini
January 2003, Tsitologiia,
A Rosina, and L Provini
September 2009, Bioinspiration & biomimetics,
A Rosina, and L Provini
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
A Rosina, and L Provini
January 2001, Journal of neurocytology,
A Rosina, and L Provini
August 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Rosina, and L Provini
October 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Rosina, and L Provini
January 1972, Experimental brain research,
Copied contents to your clipboard!