Enhancement of radiation-induced DNA-protein crosslinking by N-methylformamide. 1987

C M Arundel, and P J Tofilon

The effects of the differentiating agent N-methylformamide (NMF) on radiation-induced DNA damage and repair in vitro were investigated using the alkaline elution assay. Two tumor cell lines were examined: Clone A, a human colon adenocarcinoma, and HCA-1, a murine hepatocarcinoma. Both cell lines showed changes suggestive of a better differentiated phenotype when exposed to NMF. Treatment with NMF enhanced the radiation sensitivity of Clone A cells but had no effect on the radiation response of HCA-1 cells. Irradiation of NMF-treated cells, both Clone A and HCA-1, induced the formation of DNA-protein crosslinks (DPCs). The level of DPCs induced increased linearly as a function of increasing gamma-ray dose. The DPCs did not seem to be the result of NMF exposure alone, but rather an NMF-mediated modification of the spectrum of gamma-ray-induced DNA lesions. When the DPCs were removed by proteolytic digestion, no NMF effect was observed on either strand-break formation or repair.

UI MeSH Term Description Entries
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005559 Formamides A group of amides with the general formula of R-CONH2.

Related Publications

C M Arundel, and P J Tofilon
March 1985, Cancer treatment reports,
C M Arundel, and P J Tofilon
January 1982, Radiation research,
C M Arundel, and P J Tofilon
March 1999, The Biochemical journal,
C M Arundel, and P J Tofilon
January 1994, Methods in molecular biology (Clifton, N.J.),
C M Arundel, and P J Tofilon
January 2001, Methods in molecular biology (Clifton, N.J.),
C M Arundel, and P J Tofilon
June 2016, Journal of cancer research and clinical oncology,
C M Arundel, and P J Tofilon
January 1986, Cancer chemotherapy and pharmacology,
C M Arundel, and P J Tofilon
September 1983, Radiation research,
Copied contents to your clipboard!