Simulation of the purine nucleotide cycle as an anaplerotic process in skeletal muscle. 1987

E I Canela, and I Ginesta, and R Franco

A computer model of purine nucleotide and citric acid cycles joined through fumarate is given. Steady-state equations corresponding to metabolic enzymes are written based on the information from the literature about their kinetic behavior. Numerical integration of this set of equations is performed and in order to maintain an overall stabilization between the two cycles, enzymatic activities, in the form of V, have been calculated. Sensitivity coefficients for enzymes indicate that the control is exerted, depending upon the intermediate concentrations, and furthermore, it is demonstrated that AMP concentration in muscle should be very low. From stabilization, simulation of exercise conditions has been performed by diminishing [ATP] and increasing accordingly [ADP] and [AMP]. In such conditions the operation of purine nucleotide cycle leads to a considerable increase in the level of citric acid cycle intermediates. Disruption of purine nucleotide cycle by altering some of the three enzymatic steps leads to a lesser increase of these intermediates. The set of results presented seems to confirm the hypothesis that purine nucleotide cycle acts as an anaplerotic process in muscle, as the experimental results of Aragon and Lowenstein (Aragon, J.J., and Lowenstein, J.M. (1980) Eur. J. Biochem. 110, 371-377) suggest.

UI MeSH Term Description Entries
D007291 Inosine Monophosphate Inosine 5'-Monophosphate. A purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. IMP,Inosinic Acid,Ribosylhypoxanthine Monophosphate,Inosinic Acids,Sodium Inosinate,Acid, Inosinic,Acids, Inosinic,Inosinate, Sodium,Monophosphate, Inosine,Monophosphate, Ribosylhypoxanthine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011685 Purine Nucleotides Purines attached to a RIBOSE and a phosphate that can polymerize to form DNA and RNA. Nucleotides, Purine
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D000659 AMP Deaminase An enzyme that catalyzes the deamination of AMP to IMP. EC 3.5.4.6. AMP Aminase,Adenylate Deaminase,5'-AMP Deaminase,AMP Aminohydrolase,Myoadenylate Deaminase,5' AMP Deaminase,Aminase, AMP,Aminohydrolase, AMP,Deaminase, 5'-AMP,Deaminase, AMP,Deaminase, Adenylate,Deaminase, Myoadenylate

Related Publications

E I Canela, and I Ginesta, and R Franco
September 1982, Experientia,
E I Canela, and I Ginesta, and R Franco
July 1978, Federation proceedings,
E I Canela, and I Ginesta, and R Franco
November 1986, The American journal of physiology,
E I Canela, and I Ginesta, and R Franco
January 1981, Current topics in cellular regulation,
E I Canela, and I Ginesta, and R Franco
September 1979, Biochemical and biophysical research communications,
E I Canela, and I Ginesta, and R Franco
January 1971, Science (New York, N.Y.),
E I Canela, and I Ginesta, and R Franco
January 1985, Advances in myocardiology,
E I Canela, and I Ginesta, and R Franco
October 1984, The Journal of clinical investigation,
E I Canela, and I Ginesta, and R Franco
January 1998, Advances in experimental medicine and biology,
Copied contents to your clipboard!