Enhancement of rat liver microsomal metabolism of azoxymethane to methylazoxymethanol by chronic ethanol administration: similarity to the microsomal metabolism of N-nitrosodimethylamine. 1987

O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams

We compared the metabolism of azoxymethane (AOM) and of N-nitrosodimethylamine (NDMA) by liver microsomes obtained from male F344 rats pair-fed for 3 weeks either a control liquid diet or an isocaloric liquid diet containing ethanol at a concentration of 6.6% by volume. High-performance liquid chromatographic analysis of the products of the microsomal metabolism of AOM showed that methylazoxymethanol was the only primary metabolite. While the formation of small (less than 4% of methylazoxymethanol) quantities of methanol and formaldehyde could also be detected in this reaction, these products could be accounted for almost entirely by the spontaneous decomposition of methylazoxymethanol. With NDMA as the substrate in the incubation system, the formation of methylamine, formaldehyde, methanol, and an additional, as yet unidentified metabolite was detected. Liver microsomes obtained from rats fed the ethanol-containing diet up to the time of sacrifice were 12-18 times more active in the metabolism of both AOM and NDMA than liver microsomes obtained from rats fed the control, ethanol-free diet for the same period. When rats fed the ethanol diet for 20.5 days were fed the control diet for 0.5 days and then sacrificed, only a 2- to 3-fold increase in the metabolism of both AOM and NDMA by liver microsomes was observed, indicating that cessation of ethanol intake results in a rapid decrease of the ethanol-induced metabolic enzymes. Hepatocytes isolated from ethanol-fed rats showed a significantly enhanced sensitivity to AOM- as well as to NDMA-induced unscheduled DNA synthesis, indicating that the increased rate of microsomal metabolism induced by ethanol is associated with enhanced carcinogen activation in vitro. The metabolism of AOM and NDMA by liver microsomes was inhibited to similar extents by carbon monoxide, pyrazole, sodium azide, aminoacetonitrile, imidazole, and ethanol. In addition, both ethanol and NDMA were found to inhibit competitively the microsomal metabolism of AOM. These results suggest that AOM and NDMA are metabolized by very similar, indeed perhaps the same rat liver microsomal enzyme(s).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008746 Methylazoxymethanol Acetate The aglycone of CYCASIN. It acts as a potent carcinogen and neurotoxin and inhibits hepatic DNA, RNA, and protein synthesis. (Methyl-ONN-azoxy)methanol Acetate,Acetate, Methylazoxymethanol
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004128 Dimethylnitrosamine A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. It causes serious liver damage and is a hepatocarcinogen in rodents. Nitrosodimethylamine,N-Nitrosodimethylamine,NDMA Nitrosodimethylamine,N Nitrosodimethylamine,Nitrosodimethylamine, NDMA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
November 1990, Cancer letters,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
August 1970, Biochemical pharmacology,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
January 1984, Carcinogenesis,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
August 1982, Cancer research,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
January 1980, British journal of pharmacology,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
June 1980, Toxicology and applied pharmacology,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
January 2002, Teratogenesis, carcinogenesis, and mutagenesis,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
November 1975, Xenobiotica; the fate of foreign compounds in biological systems,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
March 1979, The Biochemical journal,
O S Sohn, and E S Fiala, and C Puz, and S R Hamilton, and G M Williams
September 1988, Carcinogenesis,
Copied contents to your clipboard!