Cerebellar transcranial direct current stimulation disrupts neuroplasticity of intracortical motor circuits. 2022

Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.

While previous research using transcranial magnetic stimulation (TMS) suggest that cerebellum (CB) influences the neuroplastic response of primary motor cortex (M1), the role of different indirect (I) wave inputs in M1 mediating this interaction remains unclear. The aim of this study was therefore to assess how CB influences neuroplasticity of early and late I-wave circuits. 22 young adults (22 ± 2.7 years) participated in 3 sessions in which I-wave periodicity repetitive transcranial magnetic stimulation (iTMS) was applied over M1 during concurrent application of cathodal transcranial direct current stimulation over CB (tDCSCB). In each session, iTMS either targeted early I-waves (1.5 ms interval; iTMS1.5), late I-waves (4.5 ms interval; iTMS4.5), or had no effect (variable interval; iTMSSham). Changes due to the intervention were examined with motor evoked potential (MEP) amplitude using TMS protocols measuring corticospinal excitability (MEP1mV) and the strength of CB-M1 connections (CBI). In addition, we indexed I-wave activity using short-interval intracortical facilitation (SICF) and low-intensity single-pulse TMS applied with posterior-anterior (MEPPA) and anterior-posterior (MEPAP) current directions. Following both active iTMS sessions, there was no change in MEP1mV, CBI or SICF (all P > 0.05), suggesting that tDCSCB broadly disrupted the excitatory response that is normally seen following iTMS. However, although MEPAP also failed to facilitate after the intervention (P > 0.05), MEPPA potentiated following both active iTMS sessions (both P < 0.05). This differential response between current directions could indicate a selective effect of CB on AP-sensitive circuits.

UI MeSH Term Description Entries
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D055815 Young Adult A person between 19 and 24 years of age. Adult, Young,Adults, Young,Young Adults
D019054 Evoked Potentials, Motor The electrical response evoked in a muscle or motor nerve by electrical or magnetic stimulation. Common methods of stimulation are by transcranial electrical and TRANSCRANIAL MAGNETIC STIMULATION. It is often used for monitoring during neurosurgery. Motor Evoked Potentials,Evoked Potential, Motor,Motor Evoked Potential,Potential, Motor Evoked,Potentials, Motor Evoked
D065908 Transcranial Direct Current Stimulation A technique of brain electric stimulation therapy which uses constant, low current delivered via ELECTRODES placed on various locations on the scalp. Anodal Stimulation Transcranial Direct Current Stimulation,Anodal Stimulation tDCS,Cathodal Stimulation Transcranial Direct Current Stimulation,Cathodal Stimulation tDCS,Repetitive Transcranial Electrical Stimulation,Transcranial Alternating Current Stimulation,Transcranial Electrical Stimulation,Transcranial Random Noise Stimulation,tDCS,Anodal Stimulation tDCSs,Cathodal Stimulation tDCSs,Electrical Stimulation, Transcranial,Electrical Stimulations, Transcranial,Stimulation tDCS, Anodal,Stimulation tDCS, Cathodal,Stimulation tDCSs, Anodal,Stimulation tDCSs, Cathodal,Stimulation, Transcranial Electrical,Stimulations, Transcranial Electrical,Transcranial Electrical Stimulations,tDCS, Anodal Stimulation,tDCS, Cathodal Stimulation,tDCSs, Anodal Stimulation,tDCSs, Cathodal Stimulation

Related Publications

Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
December 2016, Journal of biomedical physics & engineering,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
July 2004, The European journal of neuroscience,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
June 2013, The International journal of neuroscience,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
January 2018, Frontiers in human neuroscience,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
January 2014, NeuroImage,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
January 2018, Brain stimulation,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
March 2004, Experimental brain research,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
June 2012, Neuropsychologia,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
January 2013, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Wei-Yeh Liao, and Ryoki Sasaki, and John G Semmler, and George M Opie
May 2022, Stroke,
Copied contents to your clipboard!