Relative antigenicity in mice of H1N1, H3N2 and B strains present in inactivated influenza virus vaccines. 1987

M L Profeta, and M Ruggeri

The results of a study on serum HAI and neutralizing antibodies induced in mice by whole influenza virus vaccines containing A/Brazil/11/78 (H1N1), A/Bangkok/1/79 (H3N2) and B/Singapore/222/79 viruses are reported. According to the GMT of HAI, the antigenic potency of the three vaccine strains appear to be different. The A/Brazil/11/78 antigen induced the lowest HAI antibody responses and the A/Bangkok/1/79 antigen the greatest. This behaviour, with a few exceptions, was noted regardless of the HA amount (0.08 microgram 0.4 microgram, 2 micrograms) of each strain present in the vaccine, the number of doses (one or two), or the kind of preparation (monovalent or trivalent). The data obtained with the neutralization test with vaccines with medium HA content are concordant with previous findings. On the basis of the ratios of the GMT of the neutralizing antibodies to the GMT of the HAI antibodies, it was concluded that the HAI antibodies to A/Bangkok/1/79 antigen possess, on the whole, a neutralizing activity that is higher than that found for the HAI antibodies to A/Brazil/11/78 and B/Singapore/222/79 strains. For the latter strains, the neutralizing activity increased after the second dose. The observation of the different degrees of antigenicity of the three vaccine strains suggests that, with currently used inactivated influenza virus vaccines containing equivalent amounts of all three antigens, the dosage should be taken into consideration when the vaccines are used for subjects lacking in previous exposure to vaccine strains.

UI MeSH Term Description Entries
D007252 Influenza Vaccines Vaccines used to prevent infection by viruses in the family ORTHOMYXOVIRIDAE. It includes both killed and attenuated vaccines. The composition of the vaccines is changed each year in response to antigenic shifts and changes in prevalence of influenza virus strains. The flu vaccines may be mono- or multi-valent, which contains one or more ALPHAINFLUENZAVIRUS and BETAINFLUENZAVIRUS strains. Flu Vaccine,Influenzavirus Vaccine,Monovalent Influenza Vaccine,Universal Flu Vaccine,Universal Influenza Vaccine,Flu Vaccines,High-Dose Trivalent Influenza Vaccine,Influenza Vaccine,Influenza Virus Vaccine,Influenza Virus Vaccines,Influenzavirus Vaccines,Intranasal Live-Attenuated Influenza Vaccine,LAIV Vaccine,Monovalent Influenza Vaccines,Quadrivalent Influenza Vaccine,Trivalent Influenza Vaccine,Trivalent Live Attenuated Influenza Vaccine,Universal Flu Vaccines,Universal Influenza Vaccines,Flu Vaccine, Universal,High Dose Trivalent Influenza Vaccine,Influenza Vaccine, Monovalent,Influenza Vaccine, Quadrivalent,Influenza Vaccine, Trivalent,Influenza Vaccine, Universal,Intranasal Live Attenuated Influenza Vaccine,Vaccine, Flu,Vaccine, Influenza,Vaccine, Influenza Virus,Vaccine, Influenzavirus,Vaccine, LAIV,Vaccine, Monovalent Influenza,Vaccine, Quadrivalent Influenza,Vaccine, Trivalent Influenza,Virus Vaccine, Influenza
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D009981 Influenza B virus Species of the genus BETAINFLUENZAVIRUS that cause HUMAN INFLUENZA and other diseases primarily in humans. Antigenic variation is less extensive than in type A viruses (INFLUENZA A VIRUS) and consequently there is no basis for distinct subtypes or variants. Epidemics are less likely than with INFLUENZA A VIRUS and there have been no pandemics. Previously only found in humans, Influenza B virus has been isolated from seals which may constitute the animal reservoir from which humans are exposed. Betainfluenzavirus influenzae,FLUBV,Human Influenza B Virus,Influenza Viruses Type B,Influenza virus type B,Orthomyxoviruses Type B,Influenza B viruses
D006385 Hemagglutination Inhibition Tests Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination. Hemagglutination Inhibition Test,Inhibition Test, Hemagglutination,Inhibition Tests, Hemagglutination,Test, Hemagglutination Inhibition,Tests, Hemagglutination Inhibition
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D014613 Vaccines, Attenuated Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity. Attenuated Vaccine,Vaccines, Live, Attenuated,Attenuated Vaccines,Vaccine, Attenuated
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053118 Influenza A Virus, H1N1 Subtype A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 1 and neuraminidase 1. The H1N1 subtype was responsible for the Spanish flu pandemic of 1918 and 2009 H1N1 pandemic. H1N1 Influenza Virus,H1N1 Virus,H1N1 subtype,H1N1v Viruses,Influenza A (H1N1)pdm09,Influenza A (H1N1)pdm09 Virus,Influenza A H1N1, Variant Virus,Swine-Origin Influenza A H1N1 Virus,H1N1 Influenza Viruses,H1N1 Viruses,H1N1 subtypes,H1N1v Virus,Influenza Virus, H1N1,Swine Origin Influenza A H1N1 Virus,Virus, H1N1,Virus, H1N1 Influenza,Virus, H1N1v,subtype, H1N1

Related Publications

M L Profeta, and M Ruggeri
February 1961, The American review of respiratory disease,
M L Profeta, and M Ruggeri
December 1980, American journal of epidemiology,
M L Profeta, and M Ruggeri
August 1955, Journal of immunology (Baltimore, Md. : 1950),
M L Profeta, and M Ruggeri
March 1990, Journal of clinical microbiology,
M L Profeta, and M Ruggeri
January 1956, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!