Cytotoxic effects of glutathione synthesis inhibition by L-buthionine-(SR)-sulfoximine on human and murine tumor cells. 1986

R T Dorr, and J D Liddil, and M J Soble

The glutathione (GSH) synthesis inhibitor, buthionine sulfoximine (BSO) was tested for cytotoxicity and thiol depletion in murine and human tumor cells in vitro, and for its antitumor activity and toxicity in vivo. The cell lines used in these studies included murine L-1210 leukemia, human RPMI 8226 myeloma, MCF-7 breast cancer and WiDr colon carcinoma. Soft agar colony forming assays showed that BSO was most effective at reducing tumor colony formation when exposed continuously to cells in vitro. Drug concentrations which inhibited colony formation to 50% of control levels ranged from 2.0-6.2 mM (for 1 hour exposures), 2-100 mM for 24 hour exposures and 0.4-1.40 microM (for continuous BSO exposures). Human myeloma cells proved most sensitive to BSO. In vitro cytotoxicity correlated with depletion of intracellular nonprotein sulfhydryls to less than or equal to 10% of control values in both L-1210 and 8226 cells. This was routinely achieved with prolonged exposures to mM BSO concentrations for greater than 24 hours. Normal mice tolerated high BSO doses (up to 5.0 g/kg) without evidence of acute toxicity. BSO was not active against L-1210 leukemia-bearing DBA/2 mice. When tested in vivo against MOPC-315 plasmacytoma-bearing BALB/c mice, BSO was not active at doses up to 4.0 g/kg. In contrast, the bifunctional alkylating agent melphalan (L-PAM) was active against MOPC-315 and this activity was enhanced by a 24 hour pretreatment of mice with 50 mg/kg of L-BSO.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008558 Melphalan An alkylating nitrogen mustard that is used as an antineoplastic in the form of the levo isomer - MELPHALAN, the racemic mixture - MERPHALAN, and the dextro isomer - MEDPHALAN; toxic to bone marrow, but little vesicant action; potential carcinogen. Medphalan,Merphalan,Phenylalanine Mustard,Sarcolysine,Sarkolysin,4-(Bis(2-chloroethyl)amino)phenylalanine,Alkeran,L-PAM,Mustard, Phenylalanine
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine

Related Publications

R T Dorr, and J D Liddil, and M J Soble
January 1996, Parasitology research,
R T Dorr, and J D Liddil, and M J Soble
July 1986, International journal of radiation oncology, biology, physics,
R T Dorr, and J D Liddil, and M J Soble
August 1979, The Journal of biological chemistry,
R T Dorr, and J D Liddil, and M J Soble
May 1993, Cancer research,
R T Dorr, and J D Liddil, and M J Soble
March 1985, Toxicology and applied pharmacology,
Copied contents to your clipboard!