GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. 1987

R C Roberts, and C E Ribak

The anatomical localization of glutamic acid decarboxylase (GAD), the synthesizing enzyme for GABA, was analyzed in the brainstem auditory nuclei of the adult gerbil. GAD-positive terminals and somata were present in the cochlear nucleus, superior olivary complex, lateral lemniscus, and inferior colliculus in varying concentrations and patterns. One of the highest densities of GAD-positive terminals is found in the superficial layers of the dorsal cochlear nucleus (DCN), whereas the ventral cochlear nucleus (VCN) has somewhat fewer terminals that are arranged in pericellular plexuses. GAD-positive neurons occur mainly in the superficial and fusiform layers of the DCN and are scattered throughout the VCN. Within the superior olivary complex, the highest concentration of immunoreactive terminals and neurons occurs in the ventral and lateral nuclei of the trapezoid body. In contrast, the medial nucleus of the trapezoid body and the medial superior olive contain fewer GAD-positive puncta and probably no immunoreactive somata. The lateral superior olive and superior periolivary nucleus contain a few immunoreactive puncta but a large number of immunoreactive somata. In the midbrain, the nuclei of the lateral lemniscus contain a moderate number of GAD-positive puncta and a large number of different types of GAD-positive neurons. The inferior colliculus also contains a heterogeneous population of labeled somata, most of which are multipolar neurons. In addition, a high concentration of immunoreactive puncta occurs in this region. These data demonstrate a diverse distribution of GAD-positive neurons and puncta throughout the brainstem auditory nuclei and suggest that GABA might be an important neurotransmitter in the processing of auditory information.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R C Roberts, and C E Ribak
September 1989, The Journal of comparative neurology,
R C Roberts, and C E Ribak
May 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R C Roberts, and C E Ribak
October 1987, The Journal of comparative neurology,
R C Roberts, and C E Ribak
April 1997, The Journal of comparative neurology,
R C Roberts, and C E Ribak
January 1977, Folia morphologica,
R C Roberts, and C E Ribak
August 2010, The Journal of comparative neurology,
R C Roberts, and C E Ribak
August 1989, The Journal of comparative neurology,
R C Roberts, and C E Ribak
June 1994, The Journal of comparative neurology,
Copied contents to your clipboard!