Transfer RNA Synthesis-Coupled Translation and DNA Replication in a Reconstituted Transcription/Translation System. 2022

Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.

Transfer RNAs (tRNAs) are key molecules involved in translation. In vitro synthesis of tRNAs and their coupled translation are important challenges in the construction of a self-regenerative molecular system. Here, we first purified EF-Tu and ribosome components in a reconstituted translation system of Escherichia coli to remove residual tRNAs. Next, we expressed 15 types of tRNAs in the repurified translation system and performed translation of the reporter luciferase gene depending on the expression. Furthermore, we demonstrated DNA replication through expression of a tRNA encoded by DNA, mimicking information processing within the cell. Our findings highlight the feasibility of an in vitro self-reproductive system, in which tRNAs can be synthesized from replicating DNA.

UI MeSH Term Description Entries
D010444 Peptide Elongation Factor Tu A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP. Elongation Factor Tu,EF-Tu,Eucaryotic Elongation Factor Tu,Protein Synthesis Elongation Factor Tu,eEF-Tu,EF Tu,Factor Tu, Elongation,eEF Tu
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
May 2015, Scientific reports,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
January 1995, Methods in enzymology,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
August 1991, Journal of biochemistry,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
January 1994, The Journal of biological chemistry,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
January 2013, Nature communications,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
March 1974, FEBS letters,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
September 2016, ACS synthetic biology,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
March 1995, Journal of theoretical biology,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
August 2018, Scientific reports,
Ryota Miyachi, and Yoshihiro Shimizu, and Norikazu Ichihashi
October 1992, Nucleic acids research,
Copied contents to your clipboard!