Allosteric role of a structural NADP+ molecule in glucose-6-phosphate dehydrogenase activity. 2022

Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104.

Human glucose-6-phosphate dehydrogenase (G6PD) is the main cellular source of NADPH, and thus plays a key role in maintaining reduced glutathione to protect cells from oxidative stress disorders such as hemolytic anemia. G6PD is a multimeric enzyme that uses the cofactors β-D-glucose 6-phosphate (G6P) and "catalytic" NADP+ (NADP+c), as well as a "structural" NADP+ (NADP+s) located ∼25 Å from the active site, to generate NADPH. While X-ray crystallographic and biochemical studies have revealed a role for NADP+s in maintaining the catalytic activity by stabilizing the multimeric G6PD conformation, other potential roles for NADP+s have not been evaluated. Here, we determined the high resolution cryo-electron microscopy structures of human wild-type G6PD in the absence of bound ligands and a catalytic G6PD-D200N mutant bound to NADP+c and NADP+s in the absence or presence of G6P. A comparison of these structures, together with previously reported structures, reveals that the unliganded human G6PD forms a mixture of dimers and tetramers with similar overall folds, and binding of NADP+s induces a structural ordering of a C-terminal extension region and allosterically regulates G6P binding and catalysis. These studies have implications for understanding G6PD deficiencies and for therapy of G6PD-mediated disorders.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005955 Glucosephosphate Dehydrogenase Deficiency A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia. Deficiency of Glucose-6-Phosphate Dehydrogenase,Deficiency, GPD,Deficiency, Glucosephosphate Dehydrogenase,G6PD Deficiency,GPD Deficiency,Glucose 6 Phosphate Dehydrogenase Deficiency,Glucose-6-Phosphate Dehydrogenase Deficiency,Glucosephosphate Dehydrogenase Deficiencies,Hemolytic Anemia Due to G6PD Deficiency,Deficiencies, G6PD,Deficiencies, GPD,Deficiencies, Glucose-6-Phosphate Dehydrogenase,Deficiencies, Glucosephosphate Dehydrogenase,Deficiency of Glucose 6 Phosphate Dehydrogenase,Deficiency, G6PD,Deficiency, Glucose-6-Phosphate Dehydrogenase,Dehydrogenase Deficiencies, Glucose-6-Phosphate,Dehydrogenase Deficiencies, Glucosephosphate,Dehydrogenase Deficiency, Glucose-6-Phosphate,Dehydrogenase Deficiency, Glucosephosphate,G6PD Deficiencies,GPD Deficiencies,Glucose-6-Phosphate Dehydrogenase Deficiencies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D055503 Protein Multimerization The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein
D020134 Catalytic Domain The region of an enzyme that interacts with its substrate to cause the enzymatic reaction. Active Site,Catalytic Core,Catalytic Region,Catalytic Site,Catalytic Subunit,Reactive Site,Active Sites,Catalytic Cores,Catalytic Domains,Catalytic Regions,Catalytic Sites,Catalytic Subunits,Core, Catalytic,Cores, Catalytic,Domain, Catalytic,Domains, Catalytic,Reactive Sites,Region, Catalytic,Regions, Catalytic,Site, Active,Site, Catalytic,Site, Reactive,Sites, Active,Sites, Catalytic,Sites, Reactive,Subunit, Catalytic,Subunits, Catalytic
D020285 Cryoelectron Microscopy Electron microscopy involving rapid freezing of the samples. The imaging of frozen-hydrated molecules and organelles permits the best possible resolution closest to the living state, free of chemical fixatives or stains. Electron Cryomicroscopy,Cryo-electron Microscopy,Cryo electron Microscopy,Cryo-electron Microscopies,Cryoelectron Microscopies,Cryomicroscopies, Electron,Cryomicroscopy, Electron,Electron Cryomicroscopies,Microscopies, Cryo-electron,Microscopies, Cryoelectron,Microscopy, Cryo-electron,Microscopy, Cryoelectron

Related Publications

Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
May 2005, Acta crystallographica. Section D, Biological crystallography,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
March 2000, Structure (London, England : 1993),
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
August 2008, Protein science : a publication of the Protein Society,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
January 1965, Enzymologia biologica et clinica,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
September 1967, Biochimica et biophysica acta,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
April 1975, The Journal of clinical investigation,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
November 1982, Applied biochemistry and biotechnology,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
January 1968, Minerva otorinolaringologica,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
August 1972, Biochimica et biophysica acta,
Xuepeng Wei, and Kathryn Kixmoeller, and Elana Baltrusaitis, and Xiaolu Yang, and Ronen Marmorstein
March 1961, Blood,
Copied contents to your clipboard!