Thyroid-Stimulating Antibody/Thyroid-Stimulating Hormone Receptor Antibody Ratio as a Sensitive Screening Test for Active Graves' Orbitopathy. 2022

Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
Department of Clinical Laboratory Medicine, Hyogo Medical University School of Medicine, Nishinomiya, Japan. Electronic address: ms-nakano@hyo-med.ac.jp.

OBJECTIVE Graves' orbitopathy (GO), an extrathyroidal manifestation of Graves' disease, can seriously threaten a patient's quality of life. Given that immunosuppressive treatment during the early active phase of GO has been found to reduce both disease activity and severity, sensitive screening tests are needed. METHODS The present study included 86 patients with GO, in whom serum levels of thyroid-stimulating hormone (TSH), free triiodothyronine (T3), free thyroxine, thyroid-stimulating antibody, TSH receptor antibody, thyroid peroxidase antibody, thyroglobulin, and thyroglobulin antibody were measured within 2 months before magnetic resonance imaging (MRI) for orbit assessment. RESULTS The thyroid-stimulating antibody/TSH receptor antibody ratio was able to distinguish MRI results with a correct classification rate of 81%. When focusing on patients without T3 predominant Graves' diseases, the ratio distinguished MRI results at a rate of 92%. Receiver operating characteristic curve analysis revealed a cutoff antibody ratio of 87, which yielded a sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of 91%, 95%, 18.2, and 0.0957, respectively, for distinguished MRI results. CONCLUSIONS The thyroid-stimulating antibody/TSH receptor antibody ratio is a highly sensitive and specific indicator for active GO, especially in patients without T3 predominance, and serves as a good screening test for active GO in primary care settings.

UI MeSH Term Description Entries
D007453 Iodide Peroxidase A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8. Iodinase,Iodothyronine 5'-Deiodinase,Iodothyronine Deiodinase,Iodotyrosine Deiodase,Thyroid Peroxidase,Thyroxine 5'-Deiodinase,Thyroxine 5'-Monodeiodinase,5'-Deiodinase,Deiodinase,Iodotyrosine Deiodinase,Monodeiodinase,Reverse Triiodothyronine 5'-Deiodinase,T4-5'-Deiodinase,T4-Monodeiodinase,Tetraiodothyronine 5'-Deiodinase,Thyroxine Converting Enzyme,Triiodothyronine Deiodinase,5' Deiodinase,5'-Deiodinase, Iodothyronine,5'-Deiodinase, Reverse Triiodothyronine,5'-Deiodinase, Tetraiodothyronine,5'-Deiodinase, Thyroxine,5'-Monodeiodinase, Thyroxine,Deiodase, Iodotyrosine,Deiodinase, Iodothyronine,Deiodinase, Iodotyrosine,Deiodinase, Triiodothyronine,Enzyme, Thyroxine Converting,Iodothyronine 5' Deiodinase,Peroxidase, Iodide,Peroxidase, Thyroid,Reverse Triiodothyronine 5' Deiodinase,T4 5' Deiodinase,T4 Monodeiodinase,Tetraiodothyronine 5' Deiodinase,Thyroxine 5' Deiodinase,Thyroxine 5' Monodeiodinase,Triiodothyronine 5'-Deiodinase, Reverse
D011788 Quality of Life A generic concept reflecting concern with the modification and enhancement of life attributes, e.g., physical, political, moral, social environment as well as health and disease. HRQOL,Health-Related Quality Of Life,Life Quality,Health Related Quality Of Life
D011989 Receptors, Thyrotropin Cell surface proteins that bind pituitary THYROTROPIN (also named thyroid stimulating hormone or TSH) and trigger intracellular changes of the target cells. TSH receptors are present in the nervous system and on target cells in the thyroid gland. Autoantibodies to TSH receptors are implicated in thyroid diseases such as GRAVES DISEASE and Hashimoto disease (THYROIDITIS, AUTOIMMUNE). Receptors, Thyroid Stimulating Hormone,TSH Receptors,Thyroid Stimulating Hormone Receptors,Thyrotropin Receptors,LATS Receptors,Receptor, LATS Immunoglobulins,Receptors, LATS,Receptors, Long-Acting Thyroid Stimulator,Receptors, TSH,TSH Receptor,Thyroid Stimulating Hormone Receptor,Thyrotropin Receptor,Receptor, TSH,Receptor, Thyrotropin,Receptors, Long Acting Thyroid Stimulator
D006111 Graves Disease A common form of hyperthyroidism with a diffuse hyperplastic GOITER. It is an autoimmune disorder that produces antibodies against the THYROID STIMULATING HORMONE RECEPTOR. These autoantibodies activate the TSH receptor, thereby stimulating the THYROID GLAND and hypersecretion of THYROID HORMONES. These autoantibodies can also affect the eyes (GRAVES OPHTHALMOPATHY) and the skin (Graves dermopathy). Basedow's Disease,Exophthalmic Goiter,Goiter, Exophthalmic,Graves' Disease,Basedow Disease,Hyperthyroidism, Autoimmune,Basedows Disease,Disease, Basedow,Disease, Basedow's,Disease, Graves,Disease, Graves',Exophthalmic Goiters,Goiters, Exophthalmic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001323 Autoantibodies Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them. Autoantibody
D013954 Thyroglobulin
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4
D014284 Triiodothyronine A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. Liothyronine,T3 Thyroid Hormone,3,3',5-Triiodothyronine,Cytomel,Liothyronine Sodium,Thyroid Hormone, T3

Related Publications

Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
January 2003, Hormone research,
Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
January 2023, Frontiers in endocrinology,
Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
August 2015, Korean journal of ophthalmology : KJO,
Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
May 2021, Clinical laboratory,
Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
May 2013, Clinical chemistry,
Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
May 2014, The Journal of pediatrics,
Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
August 1990, The Indian journal of medical research,
Masayoshi Nakano, and Hiroe Konishi, and Masahiro Koshiba
January 1989, Developments in ophthalmology,
Copied contents to your clipboard!