Di-isononyl phthalate induces apoptosis and autophagy of mouse ovarian granulosa cells via oxidative stress. 2022

Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China.

Di-isononyl phthalate (DINP) has been widely utilized in industrial, commercial and medical applications for the past few years. Therefore, more attention should be paid to the toxicity of DINP. DINP can cause damage to female reproductive system; however, the potential mechanism remains to be further investigated. In this study, female mice were orally administered with 0, 2, 20 and 200 mg DINP/kg/day for 14 days. We found that DINP significantly affected the arrangement of granulosa cells in ovarian follicles. In addition, DINP could induce apoptosis, autophagy and oxidative stress of the ovary tissue. Meanwhile, the serum estradiol concentration distinctly decreased in the 20 and 200 mg/kg DINP-treated groups, suggesting that DINP might affect the function of ovarian granulosa cells. Primary mouse ovarian granulosa cells were utilized for further investigation after the cells were treated with 0, 100, 200, 400 μM DINP for 24 h. Similar to the in vivo experiment, DINP could also induce apoptosis and autophagy of ovarian granulosa cells, as well as oxidative stress; while inhibition of oxidative stress by NAC could alleviate DINP-induced apoptosis and autophagy. Furthermore, inhibition of autophagy by 3-MA could also rescue the induction of apoptosis by DINP. Taken together, these results indicated that DINP induced apoptosis and autophagy of mouse ovarian granulosa cells via oxidative stress, and autophagy played a cytotoxic role in DINP-induced apoptosis.

UI MeSH Term Description Entries
D010795 Phthalic Acids A group of compounds that has the general structure of a dicarboxylic acid-substituted benzene ring. The ortho-isomer is used in dye manufacture. (Dorland, 28th ed) Acids, Phthalic
D004051 Diethylhexyl Phthalate An ester of phthalic acid. It appears as a light-colored, odorless liquid and is used as a plasticizer for many resins and elastomers. Dioctyl Phthalate,Bis(2-ethylhexyl)phthalate,DEHP,Di(2-ethylhexyl)phthalate,Di-2-Ethylhexylphthalate,Di 2 Ethylhexylphthalate,Phthalate, Diethylhexyl,Phthalate, Dioctyl
D005260 Female Females
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
November 2020, Toxicology and industrial health,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
January 2016, PloS one,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
October 2002, Regulatory toxicology and pharmacology : RTP,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
January 2018, Marine drugs,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
July 2019, Toxicology mechanisms and methods,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
February 2022, Toxicology,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
May 2019, Toxicology research,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
December 2020, Chemosphere,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
September 2013, Environmental toxicology and pharmacology,
Jie Chen, and Si Yang, and Bingchun Ma, and Jinglei Wang, and Jiaxiang Chen
January 2000, Journal of applied toxicology : JAT,
Copied contents to your clipboard!