Characterization of xenobiotic responsive elements upstream from the drug-metabolizing cytochrome P-450c gene: a similarity to glucocorticoid regulatory elements. 1987

A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama

The DNA element governing the inducible expression of drug-metabolizing P-450c gene by xenobiotic treatments was investigated by gene transfer methods. A variety of dissected fragments from -844 to -1140bp region which was essential for the inducibility of P-450c gene were placed on the heterologous SV40 promoter for testing the inducibility. Mapping studies in combination with gel retardation assay defined the presence of the two xenobiotic responsive elements (XRE, XRE1, -1007 - -1021bp; XRE2, -1088 - -1092bp) composed of about 15 nucleotides which expressed the enhancer activity in response to xenobiotic inducers. The two XREs share 10 nucleotides in common out of 15 as expressed in the sequence CG/CTG/CC/TTG/CTCACGCT/AA and are arranged in the inverse orientation. They are different from DREs (drug responsive element) proposed previously (Sogawa, K. et al. Proc. Natl. Acad. Sci. 83, 8044-8048 (1986] and expressed a strong enhancer activity in response to 3-methylcholanthrene. The XRE shows a significant homology with glucocorticoid regulatory elements and apparently needs normal functions of a putative xenobiotic receptor for the inducible enhancer activity.

UI MeSH Term Description Entries
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005813 Genes, Synthetic Biologically functional sequences of DNA chemically synthesized in vitro. Artificial Genes,Synthetic Genes,Artificial Gene,Gene, Artificial,Gene, Synthetic,Genes, Artificial,Synthetic Gene
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
August 1991, Journal of biochemistry,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
September 1986, European journal of biochemistry,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
August 1988, Proceedings of the National Academy of Sciences of the United States of America,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
July 1987, Archives of biochemistry and biophysics,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
March 1991, Biochimica et biophysica acta,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
July 1989, Molecular pharmacology,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
May 1985, Archives of biochemistry and biophysics,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
September 1992, Neurochemistry international,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
November 1986, Biochemistry,
A Fujisawa-Sehara, and K Sogawa, and M Yamane, and Y Fujii-Kuriyama
March 1985, Archives of biochemistry and biophysics,
Copied contents to your clipboard!