Safety and efficacy of a novel iron chelator (HBED; (N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid)) in equine (Equus caballus) as a model for black rhinoceros (Diceros bicornis). 2022

Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA.

While iron overload disorder (IOD) and related disease states are not considered a common occurrence in domestic equids, these issues appear prevalent in black rhinoceroses under human care. In addressing IOD in black rhinos, altering dietary iron absorption and excretion may be the most globally practical approach. A main option for treatment used across other species such as humans, is chelation therapy using iron-specific synthetic compounds. As horses may serve as an appropriate digestive model for the endangered rhinoceros, we evaluated the potential use of the oral iron chelator N,N-bis(2-hydroxybenzyl)ethylenediamine-N,N-diacetic acid (HBED) in horses for safety and efficacy prior to testing in black rhinoceros. Health and iron digestibility and dynamics were assessed in horses (n = 6) before, and after treatment with HBED (50 mg/kg body weight) for 8 days using a crossover design with serum, faecal and urine collection. A preliminary pharmacokinetic trial was also performed but no trace of HBED was found in serially sampled plasma through 8 h post-oral dosing. HBED increased urinary iron output in horses compared to control by 0.7% of total iron intake (p < 0.01), for an average of 27 mg urinary iron/day, similar to human chelation goals. Blood chemistry, blood cell counts and overall wellness were not affected by treatment. As healthy horses are able to regulate iron absorption, the lack of change in iron balance is unsurprising. Short-term HBED administration appeared to be safely tolerated by horses, therefore it was anticipated it would also be safe to administer to black rhinos for the management of iron overload.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007502 Iron Chelating Agents Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems. Iron Chelates,Agents, Iron Chelating,Chelates, Iron,Chelating Agents, Iron
D010527 Perissodactyla An order of ungulates having an odd number of toes, including the horse, tapir, and rhinoceros. (Dorland, 27th ed) Perissodactylas
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D005029 Ethylenediamines Derivatives of ethylenediamine (the structural formula NH2CH2CH2NH2).
D006734 Horse Diseases Diseases of domestic and wild horses of the species Equus caballus. Equine Diseases,Disease, Equine,Disease, Horse,Diseases, Equine,Diseases, Horse,Equine Disease,Horse Disease
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019190 Iron Overload An excessive accumulation of iron in the body due to a greater than normal absorption of iron from the gastrointestinal tract or from parenteral injection. This may arise from idiopathic hemochromatosis, excessive iron intake, chronic alcoholism, certain types of refractory anemia, or transfusional hemosiderosis. (From Churchill's Illustrated Medical Dictionary, 1989) Overload, Iron

Related Publications

Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
August 2016, European journal of medicinal chemistry,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
June 2009, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
October 1981, Journal of wildlife diseases,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
May 1983, The Journal of laboratory and clinical medicine,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
October 2017, Journal of animal physiology and animal nutrition,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
September 1973, Journal of the South African Veterinary Association,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
March 2020, Antibiotics (Basel, Switzerland),
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
March 2010, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
March 1978, Journal of the South African Veterinary Association,
Kathleen E Sullivan, and Shana R Lavin, and Shannon Livingston, and Mitchell Knutson, and Eduardo V Valdes, and Lori K Warren
March 2015, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians,
Copied contents to your clipboard!