[Soluble egg antigen of Schistosoma japonicum induces macrophage apoptosis in mice]. 2022

G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
Department of Pathogenic Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.

OBJECTIVE To investigate the dynamic changes of macrophage numbers and apoptosis during Schistosoma japonicum infection, and to investigate the possible mechanisms of macrophage apoptosis induced by S. japonicum soluble egg antigen (SEA). METHODS C57BL/6 mice at ages of 6~8 weeks were randomly divided into 4 groups, including three experimental groups and a normal control group. Each mouse in the experimental groups was infected with (12 ± 1) cercariae of S. japonicum via the abdominal skin, and all mice in an experimental group were sacrificed 3, 5, 8 weeks post-infection, respectively, while mice in the control group were not infected with S. japonicum cercariae and sacrificed on the day of S. japonicum infection in the experimental group. Mouse liver specimens and peritoneal exudation cells were sampled in each group, and the dynamic changes of macrophage numbers and apoptosis were detected. Mouse peritoneal macrophages were isolated, purified and treated with S. japonicum SEA, PBS and ovalbumin (OVA) in vitro, and the macrophage apoptosis was detected using flow cytometry. The mRNA and protein expression of BCL-2 protein family members were determined in macrophages using real-time quantitative PCR (qP-CR) and Western blotting assays, and the activation of caspase 3 was determined using flow cytometry and Western blotting. In addition, macrophages were in vitro treated with S. japonicum SEA in presence of a caspase inhibitor, H2O2 or N-acetyl-L-cysteine, and the apoptosis of macrophages was detected using flow cytometry. RESULTS The total macrophage numbers continued to increase in mouse liver [(0.873 ± 0.106) × 106, (2.737 ± 0.460) × 106 and (3.107 ± 0.367) × 106 cells, respectively; F = 81.900, P < 0.01] and peritoneal specimens [(5.282 ± 1.136) × 105, (7.500 ± 1.200) × 105 and (12.800 ± 0.800) × 105 cells, respectively; F = 55.720, P < 0.01] 3, 5 and 8 weeks post-infection with S. japonicum, and the numbers of apoptotic macrophages also continued to increase in mouse liver [(0.092 ± 0.018) × 106, (0.186 ± 0.025) × 106 and (0.173 ± 0.0270) × 106 cells; F = 57.780, P < 0.01] and peritoneal specimens [(0.335 ± 0.022) × 105, (0.771 ± 0.099) × 105 and (1.094 ± 0.051) × 105 cells; F = 49.460, P < 0.01] 3, 5 and 8 weeks post-infection with S. japonicum. The apoptotic rate of SEA-treated macrophages [(24.330 ± 0.784)%] was significantly higher than that of PBS-[(18.500 ± 1.077)%] and OVA-treated macrophages [(18.900 ± 1.350)%] (both P values < 0.01). There were no significant differences in the mRNA or protein expression of Bcl-2 [Bcl - 2 mRNA expression: (1.662 ± 0.943) vs. (1.000 ± 0.000), t = 1.215, P > 0.05; BCL protein expression: (0.068 ± 0.004) vs. (0.070 ± 0.005), t = 0.699, P > 0.05], Bax [Bax mRNA expression: (0.711 ± 0.200) vs. (1.000 ± 0.000), t = 2.507, P > 0.05; BAX protein expression: (0.089 ± 0.005) vs. (0.097 ± 0.003), t = 2.232, P > 0.05] and Bak [Bak mRNA expression: (1.255 ± 0.049) vs. (1.00 ± 0.00), t = 0.897, P > 0.05; BAK protein expression: (0.439 ± 0.048) vs. (0.571 ± 0.091), t = 2.231, P > 0.05] between in SEA- and PBS-treated macrophages. S. japonicum SEA induced macrophage apoptosis in the presence of a caspase inhibitor (F = 0.411, P > 0.05); however, SEA failed to induce macrophage apoptosis in the presence of H2O2 or NAC (F = 11.880 and 9.897, both P values < 0.05). CONCLUSIONS S. japonicum SEA may induce macrophage apoptosis through promoting reactive oxygen species expression during S. japonicum infections in mice.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012549 Schistosoma japonicum A species of trematode blood flukes belonging to the family Schistosomatidae whose distribution is confined to areas of the ASIA, EASTERN. The intermediate host is a snail. It occurs in man and other mammals. Schistosoma japonicums,japonicum, Schistosoma
D012554 Schistosomiasis japonica Schistosomiasis caused by Schistosoma japonicum. It is endemic in the ASIA, EASTERN and affects the bowel, liver, and spleen. Schistosoma japonicum Infection,Schistosomiasis japonicum,Infection, Schistosoma japonicum,Infections, Schistosoma japonicum,Schistosoma japonicum Infections
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051028 bcl-2-Associated X Protein A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. It regulates the release of CYTOCHROME C and APOPTOSIS INDUCING FACTOR from the MITOCHONDRIA. Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein. Bax Protein,Bax-alpha Protein,Bax-omega Protein,Bax-sigma Protein,Bax Apoptosis Regulator Protein,Bax-beta Protein,Bax-delta Protein,bcl2-Associated X Protein,bcl2-Associated X Protein Isoform alpha,bcl2-Associated X Protein Isoform beta,bcl2-Associated X Protein Isoform delta,bcl2-Associated X Protein Isoform omega,bcl2-Associated X Protein Isoform sigma,Bax alpha Protein,Bax beta Protein,Bax delta Protein,Bax omega Protein,Bax sigma Protein,Protein, bcl-2-Associated X,X Protein, bcl-2-Associated,bcl 2 Associated X Protein,bcl2 Associated X Protein,bcl2 Associated X Protein Isoform alpha,bcl2 Associated X Protein Isoform beta,bcl2 Associated X Protein Isoform delta,bcl2 Associated X Protein Isoform omega,bcl2 Associated X Protein Isoform sigma
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
December 2008, Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese journal of parasitology & parasitic diseases,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
October 2019, Parasites & vectors,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
November 1981, Infection and immunity,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
April 2013, Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
July 2014, Journal of biomedical research,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
June 2007, Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese journal of parasitology & parasitic diseases,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
January 1994, Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese journal of parasitology & parasitic diseases,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
April 2012, Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
June 2001, Infection and immunity,
G Yin, and X Qi, and Y L Li, and L Xu, and S Zhou, and X J Chen, and J F Zhu, and C Su
October 2013, Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control,
Copied contents to your clipboard!