Photochemical cross-linking studies on the interaction of Escherichia coli RNA polymerase with T7 DNA. 1978

Z Hillel, and C W Wu

We have identified the subunits of Escherichia coli RNA polymerase which are in close contact with the T7 phage DNA template using photochemical cross-linking. In nonspecific T7 DNA-enzyme complexes which occur in all regions of the DNA, subunits sigma, beta, and beta' were cross-linked to the DNA. In contrast, in specific binary complexes which presumably occur at promoter sites, and in the initiation complex (holoenzyme + T7 DNA + initiator dinucleotides + three nucleoside triphosphates), only sigma and beta were cross-linked to DNA, while cross-linking of beta' could not be demonstrated. These results (1) do not support the idea that alpha subunits are involved in the enzyme-template interaction, (2) raise the possibility that sigma subunit participates directly in promoter recognition even though isolated sigma does not bind to DNA, and (3) indicate different modes of interaction between RNA polymerase and DNA in nonspecific and specific complexes. These findings are relevant to the mechanism by which RNA polymerase carries out selective transcription.

UI MeSH Term Description Entries
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

Z Hillel, and C W Wu
September 1975, European journal of biochemistry,
Z Hillel, and C W Wu
September 1973, European journal of biochemistry,
Z Hillel, and C W Wu
January 1978, Biochemical Society transactions,
Z Hillel, and C W Wu
January 2003, Methods in enzymology,
Copied contents to your clipboard!