Fluorine-19 nuclear magnetic resonance studies of lipid phase transitions in model and biological membranes. 1978

M P Gent, and C Ho

Fluorinated fatty acids of the general formula CH3(CH2)13-mCF2(CH2)m-2COOH are informative spectroscopic probes of the gel to liquid-crystalline phase transitions in phospholipid dispersions and in biological membranes. We present theoretical considerations to suggest that the 19F nuclear magnetic resonance line shapes are very different for frozen and fluid lipid regions. Our studies confirm this expectation for mixed phospholipid multilamellar dispersions containing a trace of difluoromyristate. The method correctly measures the onset and completion temperatures of the transition in the well-studied dimyristoylphosphaditylcholine distearoylphosphatidylcholine system and also describes the motional behavior of the solid and fluid phases within the transition. Lipids extracted from Escherichia coli membranes show similar motional phenomena through the transition-temperature range according to 19F nuclear magnetic resonance studies of difluoromyristate biosynthetically incorporated into the K1060B5 strain, an unsaturated fatty acid auxotroph. Intact cells or membrane vesicles show substantially different behavior from extracted lipids, indicating that membrane proteins significantly perturb the phase transition. Evidence presented in this paper also shows that the 19F resonance from Escherichia coli phospholipids is sensitive to various intramembrane interactions. There is a general decrease in restriction of motion due to neutral lipids and an opposite effect due to the architecture of the native membrane. Neither effect is temperature sensitive. However, there are interactions in the intact membrane, affecting the 19F resonance, that are temperature dependent both due to the phase-transition process and due to processes occurring at high temperatures.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D009227 Myristic Acids 14-carbon saturated monocarboxylic acids. Tetradecanoic Acids,Acids, Myristic,Acids, Tetradecanoic
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

M P Gent, and C Ho
June 1972, Annals of the New York Academy of Sciences,
M P Gent, and C Ho
June 1972, Annals of the New York Academy of Sciences,
M P Gent, and C Ho
July 1974, Journal of theoretical biology,
M P Gent, and C Ho
November 1989, Chemistry and physics of lipids,
M P Gent, and C Ho
January 1978, Methods in enzymology,
M P Gent, and C Ho
April 1975, Chemistry and physics of lipids,
M P Gent, and C Ho
May 1963, Science (New York, N.Y.),
M P Gent, and C Ho
January 1974, Methods in enzymology,
Copied contents to your clipboard!