Metabolic reprogramming consequences of sepsis: adaptations and contradictions. 2022

Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.

During sepsis, the importance of alterations in cell metabolism is underappreciated. The cellular metabolism, which has a variable metabolic profile in different cells and disease stages, is largely responsible for the immune imbalance and organ failure associated with sepsis. Metabolic reprogramming, in which glycolysis replaces OXPHOS as the main energy-producing pathway, is both a requirement for immune cell activation and a cause of immunosuppression. Meanwhile, the metabolites produced by OXPHOS and glycolysis can act as signaling molecules to control the immune response during sepsis. Sepsis-induced "energy shortage" leads to stagnated cell function and even organ dysfunction. Metabolic reprogramming can alleviate the energy crisis to some extent, enhance host tolerance to maintain cell survival functions, and ultimately increase the adaptation of cells during sepsis. However, a switch from glycolysis to OXPHOS is essential for restoring cell function. This review summarized the crosstalk between metabolic reprogramming and immune cell activity as well as organ function during sepsis, discussed the benefits and drawbacks of metabolic reprogramming to show the contradictions of metabolic reprogramming during sepsis, and assessed the feasibility of treating sepsis through targeted metabolism. Using metabolic reprogramming to achieve metabolic homeostasis could be a viable therapy option for sepsis.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018805 Sepsis Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK. Bloodstream Infection,Pyaemia,Pyemia,Pyohemia,Blood Poisoning,Poisoning, Blood,Septicemia,Severe Sepsis,Blood Poisonings,Bloodstream Infections,Infection, Bloodstream,Poisonings, Blood,Pyaemias,Pyemias,Pyohemias,Sepsis, Severe,Septicemias

Related Publications

Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
September 1996, Diabetologia,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
January 2021, Cardiovascular research,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
March 2017, Nature reviews. Nephrology,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
March 2024, Cell metabolism,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
October 1976, The Surgical clinics of North America,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
April 2020, The FEBS journal,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
June 2011, Critical care medicine,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
January 2023, Journal of inflammation research,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
April 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
Jingjing Liu, and Gaosheng Zhou, and Xiaoting Wang, and Dawei Liu
January 1998, Reproduction, nutrition, development,
Copied contents to your clipboard!