Isolated perfused Ambystoma proximal tubule: hydrodynamics modulates ultrastructure. 1987

S Tripathi, and E L Boulpaep, and A B Maunsbach

A method using a pressure-sensing servo-pipette is described for measuring downstream transepithelial pressure within isolated renal tubules perfused at flow rates designed to keep luminal solution composition constant. The hydrodynamics of in vitro microperfusion of isolated proximal tubules of Ambystoma tigrinum was varied and different states of transepithelial hydrostatic pressure difference, axial tubule flow, and transepithelial transport were correlated with epithelial ultrastructure. Tubules analyzed by ultrastructural morphometry were as follows: unperfused with and without ouabain, perfused single-end cannulated with and without ouabain, and perfused double-end cannulated tubules incubated in substrate Ringer. The results indicate that proximal tubule fine structure is well preserved for more than 3 h in unperfused and perfused tubules. Small transepithelial hydrostatic pressure gradients (less than 162 Pa) increase tubule diameters and decrease cell height without changing volumes of the cells, lateral intercellular spaces (LIS), or the basal extracellular labyrinth (BEL). Pressure gradients of 271 Pa have no further effect on tubule diameters or cell height, but significantly reduce volumes of LIS and BEL. Transport inhibition and axial flow changes have minor structural effects. This study demonstrates a close dependence of tubule ultrastructure on hydrodynamic conditions and provides guidelines for optimizing the latter during perfusion of isolated renal tubules.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Tripathi, and E L Boulpaep, and A B Maunsbach
May 1984, The American journal of physiology,
S Tripathi, and E L Boulpaep, and A B Maunsbach
December 1986, Pflugers Archiv : European journal of physiology,
S Tripathi, and E L Boulpaep, and A B Maunsbach
July 1981, The American journal of physiology,
S Tripathi, and E L Boulpaep, and A B Maunsbach
April 1982, The American journal of physiology,
S Tripathi, and E L Boulpaep, and A B Maunsbach
November 1998, The Journal of membrane biology,
S Tripathi, and E L Boulpaep, and A B Maunsbach
January 1990, Mineral and electrolyte metabolism,
S Tripathi, and E L Boulpaep, and A B Maunsbach
April 2001, Pflugers Archiv : European journal of physiology,
S Tripathi, and E L Boulpaep, and A B Maunsbach
September 1985, The American journal of physiology,
S Tripathi, and E L Boulpaep, and A B Maunsbach
July 1999, The Journal of pharmacology and experimental therapeutics,
S Tripathi, and E L Boulpaep, and A B Maunsbach
April 1981, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Copied contents to your clipboard!