The objective of this investigation was to compare the effects of the commonly used volatile anesthetics on concentrations of plasma and cerebral glucose and cerebral intermediary metabolites. Fasted male Long-Evans rats were anesthetized with a volatile anesthetic and, after tracheostomy and paralysis, were mechanically ventilated. Each of three groups received one MAC concentration of anesthesia with halothane, enflurane, or isoflurane. At the end of 60-75 min of anesthesia, blood was sampled for arterial blood gas and plasma glucose analysis, and the brain was rapidly sampled and frozen for analysis of energy metabolites. Physiologic variables were maintained as follows: PaCO2 30-40 mmHg, pHa 7.20-7.40, PaO2 greater than 60 mmHg, MAP greater than 60 mmHg, and rectal temperature 37.5-38.5 degrees C. Mean plasma glucose concentrations in the three groups were as follows (muMol/ml +/- SEM): halothane, 7.45 /- .62; enflurane, 6.95 +/- .22; isoflurane, 10.11 +/- 1.00. Mean brain glucose concentrations in the three groups were (muMol/gm wet weight): halothane, 2.04 +/- .20; enflurane, 2.07 +/- .26; isoflurane, 3.04 +/- .31. Plasma and brain glucose levels were significantly increased in the isoflurane group compared to the other two groups (P less than .05) with no differences occurring in the brain/plasma glucose ratio among the three groups. No differences were present between groups in brain lactate, pyruvate, fructose diphosphate, malate, alpha-ketoglutarate, phosphocreatine, or adenine nucleotides. Thus, at one MAC concentration, major differences between volatile anesthetics on brain energy availability are not present, although isoflurane raised cerebral glucose levels.