Anti-ischemic effects of trimetazidine: 31P-NMR spectroscopy in the isolated rat heart. 1987

N Lavanchy, and J Martin, and A Rossi

The effects of trimetazidine (TMZ) on ischemia-induced metabolic damage were evaluated by 31P-NMR spectroscopy in the isolated rat heart. Isolated rat hearts underwent retrograde perfusion (37 degrees C, 9.81 kPa, pH 7.4, bicarbonate buffer) and were subjected to either partial global ischemia (24 min, 0.2 ml.min-1 residual coronary flow) or total global ischemia (12 min, no flow). 31P-NMR spectra (132 accumulations, 45 degrees, 101.3 MHz) were recorded every 3 min. Changes in cardiac ATP, PC and Pi were followed, and intracellular pH was estimated from the chemical shift of Pi. Trimetazidine (TMZ) was added to the perfusion fluid at the beginning of the perfusion. The drug was used at 2 concentrations: 6.10(-7) M, with no effect upon cardiac contractility under normoxic conditions, and 6.10(-4) M, which significantly depresses cardiac work. When TMZ was used at a concentration of 6.10(-7) M, intracellular acidosis at the end of the 24 min low-flow ischemia protocol was lower than in control hearts (6.6 vs 6.0). During reperfusion, restoration of phosphorylation (as expressed by ATP/Pi ratios) was accelerated by the drug. Similar but more pronounced effects were seen following 12 min total ischemia when TMZ was used at a concentration (6.10(-4) M) which brings about a reduction in cardiac work. In this case, myocardial ATP content was also protected during ischemia. It is concluded that restoration of phosphorylation processes upon reperfusion is more rapid under the effects of trimetazidine than in control hearts. Protection of the mechanisms or structures involved in energy transfer could be due to a reduction in ischemia-induced intracellular acidosis under the effect of TMZ.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females

Related Publications

N Lavanchy, and J Martin, and A Rossi
April 1993, Journal of applied physiology (Bethesda, Md. : 1985),
N Lavanchy, and J Martin, and A Rossi
January 1997, The American journal of physiology,
N Lavanchy, and J Martin, and A Rossi
August 1995, The American journal of cardiology,
N Lavanchy, and J Martin, and A Rossi
June 1986, Magnetic resonance in medicine,
N Lavanchy, and J Martin, and A Rossi
January 1983, Advances in experimental medicine and biology,
N Lavanchy, and J Martin, and A Rossi
April 1986, Journal of neuroscience methods,
N Lavanchy, and J Martin, and A Rossi
July 1994, Journal of cardiovascular pharmacology,
N Lavanchy, and J Martin, and A Rossi
January 1987, Magnetic resonance in medicine,
Copied contents to your clipboard!