Initiation factor IF-3 and the binary complex between initiation factor IF-2 and formylmethionyl-tRNA are mutually exclusive on the 30-S ribosomal subunit. 1978

G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma

The formation of 30-S initiation complexes depends strongly on initiation factor IF-3; at molar ratios of IF-3 to 30-S ribosomes up to one a stimulation is observed, whereas at ratios higher than one, initiation complex formation declines strongly. The target of the observed inhibition of fMet-tRNA binding at high concentrations of IF-3 is the 30-S initiation complex itself. On the one hand addition of IF-3 to preformed 30-S initiation complexes leads to a release of bound fMet-tRNA which is linear with the amount of factor added, whereas no effect on isolated 70-S initiation complexes is seen. The release of fMet-tRNA from preformed 30-S initiation complexes is accompanied by a release of IF-2 in a one-to-one molar ratio which is in agreement with our previous findings showing that binding of fMet-tRNA takes place via a binary complex: IF-2 . fMet-tRNA (Eur. J. Biochem. 66, 181--192 and 77, 69--75). On the other hand increasing amounts of both IF-2 and fMet-tRNA relieve the IF-3-induced inhibition of 30-S initiation complex formation. From these findings it is concluded that IF-3 and the IF-2 . fMet-tRNA complex are mutually exclusive on the 30-S ribosome. This implies that under our experimental conditions MS2 RNA binding precedes fMet-tRNA binding if one accepts that the presence of IF-3 on the 30-S subunit is obligatory for messenger binding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009239 N-Formylmethionine Effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eucaryotic cells. N Formylmethionine,Formylmethionine, N
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
July 1977, European journal of biochemistry,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
July 1974, Biochemical and biophysical research communications,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
May 1973, FEBS letters,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
March 1986, Biochimica et biophysica acta,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
June 2000, Journal of molecular biology,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
October 1974, Biochemical and biophysical research communications,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
September 1973, FEBS letters,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
December 1989, The Journal of biological chemistry,
G A van der Hofstad, and A Buitenhek, and L Bosch, and H O Voorma
October 1983, Biochimica et biophysica acta,
Copied contents to your clipboard!