Isolation and characterization of a nucleolar 2'-O-methyltransferase from Ehrlich ascites tumor cells. 1987

D C Eichler, and N K Raber, and C M Shumard, and S J Eales

A 2'-O-methyltransferase that transfers the methyl group from S-adenosylmethionine to the 2'-hydroxyl group of ribose moieties of RNA has been purified from Ehrlich ascites tumor cell nucleoli. The partially purified enzyme is devoid of other RNA methylase activities and is free of ribonucleases. The enzyme has optimal activity in tris(hydroxymethyl)aminomethane buffer, pH 8.0, in the presence of 0.4 mM ethylenediaminetetraacetic acid, 2 mM dithiothreitol, and 50 mM KCl, and has an apparent Km for S-adenosylmethionine of 0.44 microM. Gel filtration studies of this enzyme gave a Stokes radius of 43 A. Sedimentation velocity measurements in glycerol gradients yield an S20,w of 8.0 S. From these values, a native molecular weight of 145,000 was calculated. The enzyme catalyzes the methylation of synthetic homoribopolymers as well as 18S and 28S rRNA; however, poly(C) is the preferred synthetic substrate, and preference for unmethylated sequences of rRNA was observed. For each RNA substrate examined, only methylation of the 2'-hydroxyl group of the ribose moieties was detected.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012436 S-Adenosylmethionine Physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in treatment of chronic liver disease. (From Merck, 11th ed) AdoMet,Ademetionine,FO-1561,Gumbaral,S Amet,S-Adenosyl-L-Methionine,S-Adenosylmethionine Sulfate Tosylate,SAM-e,Samyr,FO 1561,FO1561,S Adenosyl L Methionine,S Adenosylmethionine,S Adenosylmethionine Sulfate Tosylate
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D C Eichler, and N K Raber, and C M Shumard, and S J Eales
January 1986, Journal of cellular biochemistry,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
July 1975, Experimental cell research,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
March 1982, Biochemistry,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
February 1994, Archives of biochemistry and biophysics,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
October 1975, Biochimica et biophysica acta,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
December 1979, Biochemical and biophysical research communications,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
January 1983, European journal of biochemistry,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
November 1983, Biochemistry,
D C Eichler, and N K Raber, and C M Shumard, and S J Eales
June 1980, Biochemistry,
Copied contents to your clipboard!