Characterization of gp 50, a major glycoprotein present in rat brain synaptic membranes, with a monoclonal antibody. 1987

P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd

Several cell lines secreting monoclonal antibodies (Mabs) against a major forebrain synaptic membrane (SM) glycoprotein, gp 50, have been raised. Western blots show that the Mabs react with a polypeptide doublet of Mrs 49 and 45 kDa. These polypeptides exist solely in a concanavalin A (Con A) binding form. Removal of the Con A receptors by digestion with endo-beta-N-acetylglucosaminidase H (endo H) lowers the Mrs of the glycoprotein doublet to 36.5 and 34 kDa. Western blots of 2D polyacrylamide gels indicate that gp 50 exists in several isoforms. Solid phase radioimmunoassay (RIA) and Western blots of brain subcellular fractions show the antigenic material to be concentrated in the SM fraction, but to be present in much lower amounts in synaptic junctions and postsynaptic densities. Gp 50 appears to be brain specific. Regional distribution studies show that it is present in all brain regions but is two-fold concentrated in cerebellum, brainstem and midbrain compared to forebrain. Immunocytochemical studies of several brain regions show that gp 50-like immunoreactivity is neuron specific and is concentrated in selected neuronal species, particularly granule cells. In both cerebellar and hippocampal granule cells gp 50-like immunoreactivity is localized in the perikarya and primary dendrites. Though immunocytochemistry did not show staining of synaptic regions this may be due to masking of the reactive epitope. The results are discussed in terms of the molecular properties of gp 50 and its subcellular localization in brain tissue.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell

Related Publications

P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
September 1988, Brain research,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
April 1991, Cancer research,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
May 1987, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
July 1988, Biochemical and biophysical research communications,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
February 1974, Journal of neurochemistry,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
April 1997, The Journal of biological chemistry,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
February 1994, Neuroscience letters,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
October 2015, The Journal of infectious diseases,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
December 1971, Biochimica et biophysica acta,
P W Beesley, and T Paladino, and C Gravel, and R A Hawkes, and J W Gurd
January 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!