Radioimmunodetection of human glioma xenografts by monoclonal antibody to epidermal growth factor receptor. 1987

H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski

Murine IgG2a monoclonal antibody (MAb) 425 specifically detects epidermal growth factor receptor, which is expressed on human gliomas and tumors of other tissue origin but rarely on normal brain tissues, and not at all on bone marrow and peripheral blood cells. 131I-labeled F(ab')2 fragments of this MAb injected into nude mice grafted with U-87 MG glioma cells preferentially localized in tumor tissue compared to normal mouse tissues, as determined by differential tissue counting of radioactivity. The mean tumor-to-tissue ratios of radioactivity ranged between 8.2 (blood) and 55.8 (muscle) at 2 days after the injection of 15 muCi of 131I-425 F(ab')2/mouse. Radiolabeled fragments of an anti-hepatitis virus IgG2a MAb did not localize in tumors. The localization index derived from the ratios of specific antibody to indifferent antibody in tumor tissue relative to blood was 9.94 at 2 days following the MAb injection. The labeled MAb did not localize in a xenograft of colorectal cancer tumor, which does not express the epidermal growth factor receptor. Tumors could be located by whole-body gamma-scintigraphy without background subtraction following the injection of 100 muCi of radiolabeled MAb 425 F(ab')2 fragments. The data suggest that MAb 425 is a likely candidate for clinical diagnostic and radioimmunotherapy trials.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011877 Radionuclide Imaging The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph. Gamma Camera Imaging,Radioisotope Scanning,Scanning, Radioisotope,Scintigraphy,Scintiphotography,Imaging, Gamma Camera,Imaging, Radionuclide
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D001254 Astrocytoma Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082) Astrocytoma, Subependymal Giant Cell,Glioma, Astrocytic,Oligoastrocytoma, Mixed,Pleomorphic Xanthoastrocytomas,Anaplastic Astrocytoma,Astrocytoma, Grade I,Astrocytoma, Grade II,Astrocytoma, Grade III,Astrocytoma, Protoplasmic,Astroglioma,Cerebral Astrocytoma,Childhood Cerebral Astrocytoma,Fibrillary Astrocytoma,Gemistocytic Astrocytoma,Intracranial Astrocytoma,Juvenile Pilocytic Astrocytoma,Pilocytic Astrocytoma,Subependymal Giant Cell Astrocytoma,Anaplastic Astrocytomas,Astrocytic Glioma,Astrocytic Gliomas,Astrocytoma, Anaplastic,Astrocytoma, Cerebral,Astrocytoma, Childhood Cerebral,Astrocytoma, Fibrillary,Astrocytoma, Gemistocytic,Astrocytoma, Intracranial,Astrocytoma, Juvenile Pilocytic,Astrocytoma, Pilocytic,Astrocytomas,Astrocytomas, Grade III,Astrogliomas,Cerebral Astrocytoma, Childhood,Cerebral Astrocytomas,Childhood Cerebral Astrocytomas,Fibrillary Astrocytomas,Gemistocytic Astrocytomas,Gliomas, Astrocytic,Grade I Astrocytoma,Grade I Astrocytomas,Grade II Astrocytoma,Grade II Astrocytomas,Grade III Astrocytoma,Grade III Astrocytomas,Intracranial Astrocytomas,Juvenile Pilocytic Astrocytomas,Mixed Oligoastrocytoma,Mixed Oligoastrocytomas,Pilocytic Astrocytoma, Juvenile,Pilocytic Astrocytomas,Pleomorphic Xanthoastrocytoma,Protoplasmic Astrocytoma,Protoplasmic Astrocytomas,Xanthoastrocytoma, Pleomorphic

Related Publications

H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
January 1991, Anticancer research,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
February 1986, Japanese journal of cancer research : Gann,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
February 2011, The Journal of biological chemistry,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
January 1982, Journal of cellular biochemistry,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
January 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
January 1983, Hybridoma,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
January 1986, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
June 1983, Cancer research,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
November 1989, Journal of the National Cancer Institute,
H Takahashi, and D Herlyn, and B Atkinson, and J Powe, and U Rodeck, and A Alavi, and D A Bruce, and H Koprowski
January 1987, Methods in enzymology,
Copied contents to your clipboard!