Electrical stimulation of the endothelial surface of pressurized cat middle cerebral artery results in TTX-sensitive vasoconstriction. 1987

D R Harder, and J A Madden

The purpose of this study was to examine the electrical and mechanical responses of cat middle cerebral arteries to electrical stimulation of the adventitial vs. intimal surface of the vessels and to determine the responses as a function of transmural pressure. Middle cerebral arteries were cannulated at both ends. Within each cannula was a stimulating electrode. Electrical stimulation (0.5-msec square current pulses at 0.5 Hz yielding 160 microA of current between electrodes) resulted in significant reduction in diameter that was greater at both 40 and 80 mm Hg vs. 100 or 140 mm Hg. Conversely, adventitial stimulation of perivascular nerves with transmural platinum stimulating electrodes resulted in significant vasodilation. The constrictor response to intimal stimulation, as well as the dilatory response to adventitial stimulation, was blocked by tetrodotoxin. The constrictor response to luminal stimulation was enhanced by scorpion toxin demonstrating a functional role for tissues containing fast Na+ channels. Perfusion with collagenase to disrupt the endothelium also abolished the constrictor response to luminal stimulation. The divergence of responses between adventitial and luminal surface stimulation may suggest that different cell layers within a blood vessel serve different functions, one to increase resistance and another to decrease resistance. For example, in cat middle cerebral arteries, the adventitial nerves (i.e., via reflexes) may increase flow, while blood-borne substances may mediate release of agents that reduce flow.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D004108 Dilatation, Pathologic The condition of an anatomical structure's being dilated beyond normal dimensions. Ectasia,Dilatation, Pathological,Dilatations, Pathologic,Dilatations, Pathological,Pathologic Dilatation,Pathologic Dilatations,Pathological Dilatation,Pathological Dilatations
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

D R Harder, and J A Madden
September 1979, Revista espanola de fisiologia,
D R Harder, and J A Madden
July 1980, The American journal of physiology,
D R Harder, and J A Madden
August 1978, The American journal of physiology,
D R Harder, and J A Madden
August 1979, The Journal of physiology,
D R Harder, and J A Madden
June 1986, Brain research,
D R Harder, and J A Madden
April 1995, Neurological research,
D R Harder, and J A Madden
August 1984, Circulation research,
Copied contents to your clipboard!