The lipolytic effects of mouse placental lactogen II, mouse prolactin, and mouse growth hormone on adipose tissue from virgin and pregnant mice. 1987

P J Fielder, and F Talamantes

The lipolytic activities of three structurally related mouse hormones, placental lactogen II (mPL-II), GH (mGH), and PRL (mPRL), and human PL (hPL) were investigated. Adipose tissue was obtained from virgin and day 12 and day 16 pregnant mice. Lipolytic activity was assessed by the ability of the hormones to stimulate glycerol release from fat explants in the presence of dexamethasone and by the ability of the hormones to sensitize adipose tissue to the lipolytic stimulus theophylline. In the first experiment, adipose tissue explants were incubated in Krebs-Ringer buffer with 0.0, 0.1, 0.5, 1.0, 5.0, and 10.0 micrograms/ml hormone for 4 h. mGH was lipolytic at a concentration of 0.5 micrograms/ml or greater in adipose tissue from both virgin and pregnant mice. mPRL was lipolytic at a concentration of 5.0 micrograms/ml or greater in adipose tissue from virgin mice. In adipose tissue from pregnant mice mPRL was not lipolytic in day 12 tissue, but it was lipolytic at a concentration of 5.0 micrograms/ml in day 16 tissue. mPL-II and hPL did not stimulate glycerol release in mouse adipose tissue from virgin or pregnant mice. In the second experiment preincubating adipose tissue from virgin mice in the presence of 0.5 or 5.0 micrograms/ml mGH significantly increased the ability of the tissue to respond to theophylline; however, mGH did not induce this response in adipose tissue from pregnant mice, mPRL, mPL-II, and hPL did not increase theophylline-induced lipolysis in adipose tissue from either virgin or pregnant mice. These results indicate that two lipolytic mechanisms are activated in adipose tissue from mice; mGH can activate both mechanisms, whereas mPRL can activate only one.

UI MeSH Term Description Entries
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D010928 Placental Lactogen A polypeptide hormone of approximately 25 kDa that is produced by the SYNCYTIOTROPHOBLASTS of the PLACENTA, also known as chorionic somatomammotropin. It has both GROWTH HORMONE and PROLACTIN activities on growth, lactation, and luteal steroid production. In women, placental lactogen secretion begins soon after implantation and increases to 1 g or more a day in late pregnancy. Placental lactogen is also an insulin antagonist. Choriomammotropin,Chorionic Somatomammotropin, Human,Human Placental Lactogen,Lactogen Hormone, Placental,Mammotropic Hormone, Placental,Somatomammotropin, Chorionic,Choriomammotrophin,HCS (Human Chorionic Somatomammotropin),HPL (Human Placental Lactogen),PAPP-D,Placental Luteotropin,Pregnancy-Associated Plasma Protein D,Chorionic Somatomammotropin,Human Chorionic Somatomammotropin,Lactogen, Placental,Luteotropin, Placental,Placental Lactogen, Human,Placental Mammotropic Hormone,Pregnancy Associated Plasma Protein D
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D005260 Female Females
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013806 Theophylline A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3',5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. 1,3-Dimethylxanthine,3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione,Accurbron,Aerobin,Aerolate,Afonilum Retard,Aquaphyllin,Armophylline,Bronchoparat,Bronkodyl,Constant-T,Elixophyllin,Euphylong,Glycine Theophyllinate,Lodrane,Monospan,Nuelin,Nuelin S.A.,Quibron T-SR,Slo-Phyllin,Somophyllin-T,Sustaire,Synophylate,Theo Von Ct,Theo-24,Theo-Dur,Theobid,Theocin,Theoconfin Continuous,Theodur,Theolair,Theolix,Theon,Theonite,Theopek,Theophylline Anhydrous,Theophylline Sodium Glycinate,Theospan,Theostat,Theovent,Uniphyl,Uniphyllin,Uniphylline,1,3 Dimethylxanthine,Anhydrous, Theophylline,Constant T,ConstantT,Ct, Theo Von,Glycinate, Theophylline Sodium,Quibron T SR,Quibron TSR,Slo Phyllin,SloPhyllin,Sodium Glycinate, Theophylline,Somophyllin T,SomophyllinT,Theo 24,Theo Dur,Theo24,Theophyllinate, Glycine,Von Ct, Theo

Related Publications

P J Fielder, and F Talamantes
November 1981, Endocrinology,
P J Fielder, and F Talamantes
November 1989, Molecular endocrinology (Baltimore, Md.),
P J Fielder, and F Talamantes
January 1978, British journal of obstetrics and gynaecology,
P J Fielder, and F Talamantes
April 1990, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P J Fielder, and F Talamantes
September 2003, Pituitary,
P J Fielder, and F Talamantes
March 2000, The Journal of biological chemistry,
Copied contents to your clipboard!