New Insights into Treating Early and Advanced Stage Diabetic Retinopathy. 2022

Rafael Simó, and Cristina Hernández
Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Vall d'Hebron Campus, 08035 Barcelona, Spain.

Diabetic retinopathy (DR) is the leading cause of preventable blindness in the working-age population. The disease progresses slowly, and we can roughly differentiate two stages: early-stage (ESDR), in which there are mild retinal lesions and visual acuity is generally preserved, and advanced-stage (ASDR), in which the structural lesions are significant and visual acuity is compromised. At present, there are no specific treatments for ESDR and the current recommended action is to optimize metabolic control and maintain close control of blood pressure. However, in the coming years, it is foreseeable that therapeutic strategies based in neuroprotection will be introduced in the clinical arena. This means that screening aimed at identifying patients in whom neuroprotective treatment might be beneficial will be crucial. Regarding the treatment of ASDR, the current primary course is based on laser photocoagulation and intravitreal injections of anti-angiogenic factors or corticosteroids. Repeated intravitreal injections of anti-VEGF agents as the first-line treatment would be replaced by more cost-effective and personalized treatments based on the results of "liquid biopsies" of aqueous humor. Finally, topical administration (i.e., eye drops) of neuroprotective, anti-inflammatory and anti-angiogenic agents will represent a revolution in the treatment of DR in the coming decade. In this article, all these approaches and others will be critically discussed from a holistic perspective.

UI MeSH Term Description Entries
D003920 Diabetes Mellitus A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
D003930 Diabetic Retinopathy Disease of the RETINA as a complication of DIABETES MELLITUS. It is characterized by the progressive microvascular complications, such as ANEURYSM, interretinal EDEMA, and intraocular PATHOLOGIC NEOVASCULARIZATION. Diabetic Retinopathies,Retinopathies, Diabetic,Retinopathy, Diabetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D014792 Visual Acuity Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast. Acuities, Visual,Acuity, Visual,Visual Acuities
D058449 Intravitreal Injections The administration of substances into the VITREOUS BODY of the eye with a hypodermic syringe. Injection, Intravitreal,Injections, Intravitreal,Intravitreal Injection
D020533 Angiogenesis Inhibitors Agents and endogenous substances that antagonize or inhibit the development of new blood vessels. Angiogenesis Factor Inhibitor,Angiogenesis Inhibitor,Angiogenetic Antagonist,Angiogenetic Inhibitor,Angiogenic Antagonist,Angiogenic Antagonists,Angiogenic Inhibitor,Angiostatic Agent,Angiostatic Agents,Anti-Angiogenetic Agent,Anti-Angiogenic Drug,Anti-Angiogenic Drugs,Antiangiogenic Agent,Neovascularization Inhibitor,Neovascularization Inhibitors,Angiogenesis Factor Inhibitors,Angiogenetic Antagonists,Angiogenetic Inhibitors,Angiogenic Inhibitors,Antagonists, Angiogenic,Anti-Angiogenesis Effect,Anti-Angiogenesis Effects,Anti-Angiogenetic Agents,Antiangiogenesis Effect,Antiangiogenesis Effects,Antiangiogenic Agents,Inhibitors, Angiogenesis,Inhibitors, Angiogenetic,Inhibitors, Angiogenic,Inhibitors, Neovascularization,Agent, Angiostatic,Agent, Anti-Angiogenetic,Agent, Antiangiogenic,Agents, Angiostatic,Agents, Anti-Angiogenetic,Agents, Antiangiogenic,Antagonist, Angiogenetic,Antagonist, Angiogenic,Antagonists, Angiogenetic,Anti Angiogenesis Effect,Anti Angiogenesis Effects,Anti Angiogenetic Agent,Anti Angiogenetic Agents,Anti Angiogenic Drug,Anti Angiogenic Drugs,Drug, Anti-Angiogenic,Drugs, Anti-Angiogenic,Effect, Anti-Angiogenesis,Effect, Antiangiogenesis,Effects, Anti-Angiogenesis,Effects, Antiangiogenesis,Factor Inhibitor, Angiogenesis,Factor Inhibitors, Angiogenesis,Inhibitor, Angiogenesis,Inhibitor, Angiogenesis Factor,Inhibitor, Angiogenetic,Inhibitor, Angiogenic,Inhibitor, Neovascularization,Inhibitors, Angiogenesis Factor

Related Publications

Rafael Simó, and Cristina Hernández
August 2018, Diabetes research and clinical practice,
Rafael Simó, and Cristina Hernández
January 2013, Middle East African journal of ophthalmology,
Rafael Simó, and Cristina Hernández
November 1963, Texas state journal of medicine,
Rafael Simó, and Cristina Hernández
January 2021, Frontiers in immunology,
Rafael Simó, and Cristina Hernández
June 2017, Acta diabetologica,
Rafael Simó, and Cristina Hernández
September 2007, American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists,
Rafael Simó, and Cristina Hernández
December 1995, NIAID AIDS agenda,
Rafael Simó, and Cristina Hernández
January 2000, Diabetes technology & therapeutics,
Rafael Simó, and Cristina Hernández
August 2020, Current eye research,
Rafael Simó, and Cristina Hernández
September 2003, JAMA,
Copied contents to your clipboard!